首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen and carbon monoxide kinetics of Glycera dibranchiata monomeric hemoglobin have been studied using laser photolysis, air flash, and stopped flow techniques. The reactions of this hemoglobin with both ligands were found to be more rapid than the corresponding reactions involving myoglobin and were also biphasic in nature, the rate constants being approximately an order of magnitude different for the fast and slow phases in each case. No pH or hemoglobin concentration dependence of the pseudo-first order rate constants was apparent between pH 6 and 9 and in the concentration range of 1.25 to 40 muM heme. Both fast and slow pseudo-first order oxygen combination rate constants varied linearly with oxygen concentration between 16 and 1300 muM. A first order slow relaxation was also noted which was linearly dependent on heme concentration and inversely dependent on oxygen concentration. This reaction has been shown to be due to a replacement of oxygen by carbon monoxide. The presence of this reaction is a result of the high affinity of Glycera monomer for carbon monoxide as shown by the partition coefficient Mr = approximately 20,000 ana an equilibrium dissociation constant of the order L = 1.1 X 10(-9) M.  相似文献   

2.
Kinetics of carbon dioxide evolution was investigated in agitation system. Reaction steps of carbon dioxide evolution in submerged fermentations may consist of three steps; the first, hydration of carbon dioxide liberated from living cells, the second, dehydration of bicarbonate ions and the third, formation of carbon dioxide bubbles. Taking into account the equilibrium between hydration of carbon dioxide and dehydration of bicarbonate ions at physiological pH value, the fallowings may be rate-limiting steps in mass transfer of carbon dioxide in submerged fermentations, dehydration of bicarbonate ions and the bubble formation. The overall velocity constant of these two reaction steps was determined in the agitation vessel This reaction obeyed good first-order kinetics and the term of was introduced as a velocity constant. This value was influenced by agitation speed, temperature, viscosity of the fluid and carbonic anhydrase. The value of carbon dioxide coefficient (Kd)CO2 was higher than the oxygen absorption coefficient Kd. The driving force of mass transfer for carbon dioxide, DCO2pCO2, therefore, was lower than that for oxygen, PBPL. The relationship between the overall coefficient of oxygen transfer across gas-liquid interface KLa and the overall velocity constant of carbon dioxide evolution was expressed in the formula   相似文献   

3.
Ribulose-1,5-bisphosphate carboxylase/oxygenase has been purified to electrophoretic homogeneity from comfrey, Symphytum spp. Sodium dodecyl sulfate polyacrylamide and polyacrylamide gel electrophoresis studies on the purified product showed no extraneous proteins. Comparisons of the electrophoretic mobilities of the subunits to those of standard proteins indicated a large subunit MW of 50 000 and a small subunit of 12 700, which for an octameric structure of each subunit indicates a native MW of 502 000. Specific activities of the comfrey enzyme ranged from 1.2 to nearly 2 μmol 14CO2 fixed/min.mg of protein over several preparations and were maintained for months when stored from the sucrose gradient at ? 70°. The specific activities depended critically on the amounts of enzyme used in the assay even under saturating conditions of substrates and cofactors. The effective pH dependence for carboxylase catalysis peaked near 7.4, which apparently is the lowest elective optimum yet reported for this enzyme from any source. However, on a constant carbon dioxide basis the pH dependence profile was reversed with a maximum near pH 8.6 which was 0.4 units higher than the value for the spinach enzyme. The Kms for carbon dioxide and ribulose-1,5-bisphosphate at pH 7.5 were 130 μM and 30 μM, respectively, which are comparable to the accepted values for the carboxylase from spinach at pH 7.2.  相似文献   

4.
Approximately one‐third of anthropogenic carbon dioxide is absorbed into the ocean and causes it to become more acidic. The Intergovernmental Panel on Climate Change (IPCC) suggested that the surface ocean pH, by the year 2100, would drop by a further 0.3 and 0.4 pH units under RCP (Representative Concentration Pathway) 6.0 and 8.5 climate scenarios. The macroalgae communities that consisted of Sargassum thunbergii and naturally attached epibionts were exposed to fluctuations of ambient and manipulated pH (0.3–0.4 units below ambient pH). The production and respiration in S. thunbergii communities were calculated from dissolved oxygen time‐series recorded with optical dissolved oxygen sensors. The pH, irradiance, and dissolved oxygen occurred in parallel with diurnal (day/night) patterns. According to net mesocosm production – photosynthetically active radiation (PAR) model, the saturation and compensation PAR, the mean maximum gross mesocosm production (GMP), and daily mesocosm respiration were higher in the CO2 enrichment, than in the ambient condition, while the mean of photosynthetic coefficient was similar. In conclusion, elevated CO2 stimulated oxygen production and consumption of S. thunbergii communities in the mesocosm. Furthermore, the sensitivity of the GMP of the S. thunbergii community to irradiance was reduced, and achieved maximum production rate at higher PAR. These positive responses to CO2 enrichment suggest that S. thunbergii communities may thrive in under high CO2 conditions.  相似文献   

5.
Carbon monoxide binding to human hemoglobin A0   总被引:3,自引:0,他引:3  
The carbon monoxide binding curve to human hemoglobin A0 has been measured to high precision in experimental conditions of 600 microM heme, 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid, 0.1 M NaCl, 10 mM inositol hexaphosphate, 1 mM disodium ethylenediaminetetraacetic acid, pH 6.94, and 25 degrees C. Comparison to the oxygen binding curve in the same experimental conditions demonstrates that the two curves are not parallel. This result invalidates Haldane's two laws for the partitioning between carbon monoxide and oxygen to human hemoglobin. The partition coefficient is found to be 263 +/- 27 at high saturation, in agreement with previous studies, but is lowered substantially at low saturation. Although the oxygen and carbon monoxide binding curves are not parallel, both show the population of the triply ligated species to be negligible. The molecular mechanism underlying carbon monoxide binding to hemoglobin is consistent with the allosteric model [Di Cera, E., Robert, C. H., & Gill, S. J. (1987) Biochemistry 26, 4003-4008], which accounts for the negligible contribution of the triply ligated species in the oxygen binding reaction to hemoglobin [Gill, S. J., Di Cera, E., Doyle, M. L., Bishop, G. A., & Robert, C. H. (1987) Biochemistry 26, 3995-4002]. The nature of the different binding properties of carbon monoxide stems largely from the lower partition coefficient of the T state (123 +/- 34), relative to the R state (241 +/- 19).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A versatile method for the determination of the ionization of guanosine is described. Suitably derivatized alkyl-guanosines are partitioned between organic solvents and aqueous buffer solutions at various pH values. Ionization is revealed by a change in partition coefficient with pH. The method is ideally suited for application to micro samples since any quantitative method can be used to determine the partition coefficient. A procedure for distinguishing N1 or O6, N2, and C8 alkylation of guanosine is described.  相似文献   

7.
The partition behaviour of cutinase on poly(ethylene glycol) (PEG)–hydroxypropyl starch aqueous two-phase systems was characterized. The effect of molecular mass of PEG, the pH of the system and tie-line length on cutinase partition coefficient and cutinase yield to the top phase was investigated for systems prepared with a purified hydroxypropyl starch (Reppal PES 100) and a crude one (HPS). The effect of the presence of different salts, such as sodium chloride, sodium sulphate and ammonium sulphate, on cutinase partition was also studied. The results lead to the conclusion that aqueous two-phase systems composed of PEG and hydroxypropyl starch are not efficient in the purification of cutinase. In the majority of cases, the partition coefficients were very close to 1, with pH being the factor which affects most cutinase partition. Partition coefficients were significantly improved when salts were added to the systems. For PEG 4000–Reppal PES 100 [at pH 4.0; 0.5 M (NH4)2SO4], the partition coefficient for cutinase was 3.7, while a value of 12 was obtained for PEG 4000–HPS (at pH 4.0; 1 M NaCl). An isoelectric point (pI) of 7.8 was confirmed for cutinase by constructing a cross partition graphic from the results obtained in the experiments with different salts.  相似文献   

8.
Reaction of Oxyhemoglobin with Carbon Monoxide   总被引:1,自引:0,他引:1       下载免费PDF全文
The reaction of oxyhemoglobin and carbon monoxide was studied kinetically at pH 7.8 in a variety of suspending media. The dielectric constant of the suspending media, as well as the viscosity (and hence the Fick diffusion coefficients), was varied with the use of glycine, glycerol, and sucrose. The results showed that the reaction was unaltered by the various additions to the media, provided that the pO2 and the concentration of carbon monoxide were held constant. Since the concentration of oxygen varies from medium to medium at constant pO2 while the pCO varies at constant concentration of carbon monoxide, the differences in the reactions with oxygen and carbon monoxide were emphasized. The lack of variation of the rate constants with changes in dielectric constant can be interpreted as indicating that electrostatic effects are unimportant in this reaction.  相似文献   

9.
Aiming at the industrial production of serogroup C meningococcal vaccine, different experimental protocols were tested to cultivate Neisseria meningitidis C and to investigate the related organic acid release. Correlations were established between specific rates of acetic acid and lactic acid accumulation and specific growth rate, during cultivations carried out on the Frantz medium in a 13 l bioreactor at 35°C, 0.5 atm, 400 rpm and air flowrate of 2 l min−1. A first set of nine batch runs was carried out: (1) with control of dissolved oxygen (O2) at 10% of its saturation point, (2) with control of pH at 6.5, and (3) without any control, respectively. Additional fed-batch or partial fed-batch cultivations were performed without dissolved O2 control, varying glucose concentration from 1.0 to 3.0 g l−1, nine of which without pH control and other two with pH control at 6.5. No significant organic acid level was detected with dissolved O2 control, whereas acetic acid formation appeared to depend on biomass growth either in the absence of any pH and dissolved O2 control or when the pH was kept at 6.5. Under these last conditions, lactic acid was released as well, but it did not seem to be associated to biomass growth. A survey of possible metabolic causes of this behavior suggested that N. meningitidis may employ different metabolic pathways for the carbon source uptake depending on the cultivation conditions.  相似文献   

10.
《Process Biochemistry》2007,42(9):1296-1301
Recombinant Bacillus sphaericus phenylalanine dehydrogenase (PheDH) partitioning was studied in polyethylene glycol (PEG) and ammonium sulfate aqueous two-phase systems (ATPS). The objectives of this work were to investigate influences; varying the molecular mass and concentration of PEG, pH, phase volume ratio (VR), tie-line length (TLL) and concentration of (NH4)2SO4 on the partition behavior of PheDH. It was revealed that the partitioning was not affected by VR, while PEG molecular mass and concentration and (NH4)2SO4 concentration had significant effects on enzyme partitioning. Longer TLL and higher pH resulted in better partitioning into the top phase. Under the most favorable partition conditions with 8.5% (w/w) PEG-6000, 17.5% (w/w) (NH4)2SO4 and VR = 0.25 at pH 8.0, partition coefficient (KE), recovery (R%), yield (Y%) and TLL were achieved 58.7%, 135%, 94.42% and 39.89% (w/w), respectively. Overall, the promising results obtained in this research indicated that the ATPS partitioning can be provided an efficient and powerful tool for recovery and purification of recombinant PheDH.  相似文献   

11.
Cefprozil is an important semi-synthetic cephalosporin antibiotic. In this study, immobilized penicillin G acylase (PGA) is used to catalyze the acylation of 7- amino-3-(1-propenyl)-4-cephalosporanic acid (7-APRA) and 4-hydroxyphenylglycine methyl ester (HPGME) and a recyclable thermo-pH responsive PNB/PADB aqueous twophase system (ATPS) is used to synthesize cefprozil. In this system, the partition coefficient of cefprozil was 2.24 with 60 mmol/L (NH4)2SO4. In addition, the optimal enzymatic reaction conditions were found to be pH 6.5, 20°C, 78 u/mL immobilized PGA, 30 mmol/L 7-APRA and 90 mmol/L HPGME. In the PNB/PADB ATPS, the maximal yield of cefprozil was 75.81% with 60 mmol/L (NH4)2SO4 and in the single aqueous system the yield was 56.02%. The yields are thought to improve because there is a reduction in product inhibition.  相似文献   

12.
Summary The effect on metabolism of hyperbaric dissolved oxygen tension in batch cultures of Candida tropicalis (Cast.) Berkhout and Rhodococcus erythropolis with three different carbon sources was studied in a 20-l bioreactor under controlled conditions. The respiratory quotient was not significantly influenced by dissolved oxygen concentrations up to 40 mg/l oxygen. Elementary cell composition and proportional contents of DNA, RNA, and protein were not markedly influenced by the various oxygen concentrations but depended mainly on the growth rate. It was found that the production of trehalose lipid by R. erythropolis was dependent on the growth rate which could be enhanced by raising the oxygen concentration. The specific activity of catalase was affected more by the nature of the carbon source than by increased oxygen concentration. On the basis of the experimental data the application of oxygen-enriched air for biotechnological processes is discussed.Symbols and abbreviations kLa Specific volumetric oxygen transfer rate - Oxygen consumption rate, grams oxygen per hour and per liter - Carbon dioxide production rate, grams carbon dioxide per hour and per liter - RQ Respiratory quotient, - t Cultivation time - YX/S Yield coefficient, grams cell dry weight/grams substrate - Yield coefficient, grams cell dry weight/grams oxygen consumed - YkJ Yield coefficient, grams cell dry weight/heat of combustion of the consumed substrate - Yave– Yield coefficient, grams cell dry weight/mol available electrons of the consumed substrate  相似文献   

13.
Growth and succinate versus lactate production from glucose by Anaerobiospirillum succiniciproducens was regulated by the level of available carbon dioxide and culture pH. At pH 7.2, the generation time was almost doubled and extensive amounts of lactate were formed in comparison with growth at pH 6.2. The succinate yield and the yield of ATP per mole of glucose were significantly enhanced under excess-CO2-HCO3 growth conditions and suggest that there exists a threshold level of CO2 for enhanced succinate production in A. succiniciproducens. Glucose was metabolized via the Embden-Meyerhof-Parnas route, and phosphoenolpyruvate carboxykinase levels increased while lactate dehydrogenase and alcohol dehydrogenase levels decreased under excess-CO2-HCO3 growth conditions. Kinetic analysis of succinate and lactate formation in continuous culture indicated that the growth rate-linked production rate coefficient (K) cells was much higher for succinate (7.2 versus 1.0 g/g of cells per h) while the non-growth-rate-related formation rate coefficient (K′) was higher for lactate (1.1 versus 0.3 g/g of cells per h). The data indicate that A. succiniciproducens, unlike other succinate-producing anaerobes which also form propionate, can grow rapidly and form high final yields of succinate at pH 6.2 and with excess CO2-HCO3 as a consequence of regulating electron sink metabolism.  相似文献   

14.
Summary The effects of average molecular weight of PEG, concentrations of PEG and KH2PO4 and pH on the partition equilibrium of acetylspiramycin in PEG/KH2PO4 aqueous two-phase systems were studied in detail. The partition coefficients of acetylspiramycin in PEG/ KH2PO4 systems were measured at room temperature 25 °C. It was found that acetylspiramycin partitioned unevenly in the aqueous two-phase systems composed of PEG and KH2PO4 and could be purified by this technique. A suitable phase-forming system (pH=6.7, 12w/w% PEG2000, 11w/w% KH2PO4) was found out after partition coefficient (Kp=42) , extraction ratio (=96%) and recovery ratio(R=98.8%) were investigated comprehensively in this paper.Hua qiang is one of the cooperators of the experimetal.  相似文献   

15.
1. The NADPH-oxidizing activity of a 100 000 × g particulate fraction of the postnuclear supernatant obtained from guinea-pig phagocytosing polymorphonuclear leucocytes has been assayed by simultaneous determination of oxygen consumption, NADPH oxidation and O?2 generation at pH 5.5 and 7.0 and with 0.15 mM and 1 mM NADPH.2. The measurements of oxygen consumption and NADPH oxidation gave comparable results. The stoichiometry between the oxygen consumed and the NADPH oxidized was 1 : 1.3. A markedly lower enzymatic activity was observed, under all the experimental conditions used, when the O?2 generation assay was employed as compared to the assays of oxygen uptake and NADPH oxidation.4. The explanation of this difference came from the analysis of the effect of superoxide dismutase and of cytochrome c which removes O?2 formed during the oxidation of NADPH.5. Both superoxide dismutase and cytochrome c inhibited the NADPH-oxidizing reaction at pH 5.5. The inhibition was higher with 1 mM NADPH than with 0.15 mM NADPH.6. Both superoxide dismutase and cytochrome c inhibited the NADPH-oxidizing reaction at pH 7.0 with 1 mM NADPH but less than at pH 5.5 with 1 mM NADPH.7. The effect of superoxide dismutase at pH 7.0 with 0.15 mM NADPH was negligible.8. In all instances the inhibitory effect of cytochrome c was greater than that of superoxide dismutase.9. It was concluded that the NADPH-oxidizing reaction studied here is made up of three components: an enzymatic univalent reduction of O2; an enzymatic, apparently non-univalent, O2 reduction and a non-enzymatic chain reaction.10. These three components are variably and independently affected by the experimental conditions used. For example, the chain reaction is freely operative at pH 5.5 with 1 mM NADPH but is almost absent at pH 7.0 with 0.15 mM NADPH, whereas the univalent reduction of O2 is optimal at pH 7.0 with 1 mM NADPH.  相似文献   

16.
Cytosolic and vacuolar pH changes caused by illumination or a changed composition of the gas phase were monitored in leaves of the NAD malic-enzyme-type C4 plant Amaranthus caudatus L. and the C3 plant Vicia faba L. by recording changes in the fluorescence of pH-indicating dyes which had been fed to the leaves. Light-dependent cytosolic alkalization and vacuolar acidification were maximal in the mesophyll cells under high-fluence-rate illumination and in the absence of CO2. Under the same conditions, measurements of light scattering and electrochromic absorption changes at 518 nm revealed maximum thylakoid energization. The results show an intimate relationship between the energization of the photosynthetic apparatus by light, an increase in cytosolic pH and a decrease in vacuolar pH. This was true for both the C4 and the C3 plant, although kinetics, extent and even direction of cytosolic pH changes differed considerably in these plants, reflecting the differences in photosynthetic carbon metabolism. Darkening produced rapid acidification in Vicia, but not in Amaranthus. Continued alkalization in Amaranthus is interpreted to be the result of the decarboxylation of a C4 intermediate and the release of liberated CO2. In the presence of CO2, energy consumption by carbon reduction decreased thylakoid energization, cytosolic alkalization and vacuolar acidification. Under low-fluence-rate illumination, thylakoid energization and light-dependent cytosolic and vacuolar pH changes were decreased in CO2-free air compared with thylakoid energization and pH changes in 1% oxygen/99% nitrogen not only in the C3 plant, but also in Amaranthus. Since oxygenation of ribulose bisphosphate initiates energy-consuming photorespiratory reactions in 21% oxygen, but not in 1% oxygen, this shows that photorespiratory reactions are active not only in the C3 but also in the C4 plant in the absence of external CO2. Photorespiratory conditions appeared to decrease energization not only in the chloroplasts, but also in the cytosol. This is indicated by decreased transfer of protons from the cytosol into the vacuole, a process which is energy-dependent.Abbreviations CDCF 5-(and 6-)carboxy-2,7-dichlorofluorescein - P700 electron-donor pigment in the reaction center of photosystem I - RuBP ribulose-1,5-bisphosphate This work was supported, within the framework of the Sonderforschungsbereiche 176 and 251 of the University of Würzburg, by the Gottfried-Wilhelm-Leibniz Program of the Deutsche Forschungsgemeinschaft. A.S.R. was the recipient of a fellowship from the Alexander-von-Humboldt-Foundation. We are grateful to Mr. Carsten Werner and Mrs. Spidola Neimanis for cooperation.  相似文献   

17.
Studies on the physiology of microbial degradation of pentachlorophenol   总被引:1,自引:0,他引:1  
Summary The requirements and conditions for pentachlorophenol (PCP) biodegradation by a mixed bacterial culture was studied. The effects of oxygen, nutrients, additional carbon sources, pH and temperature are described. Up to 90% of PCP was degraded into CO2 and inorganic chloride in 1 week at an input concentration of <600 M. Degradation continued when pO2 was lowered to 0.0002 atm but ceased when pO2 was further decreased to 0.00002 atm. Supplementary carbon sources, such as phenol, hydroxybenzoic acids or complex nutrients did not affect the biodegradation, but the presence of ammonium salts enhanced the rate of PCP degradation without affecting the yield of CO2. The degrading organisms were shown to be procaryotic mesophiles; no degradation was shown at temperatures below +8° and above +50°C. The optimum pH for degradation was from 6.4 to 7.2 and at higher pH value (8.4) degradation was inhibited more than at lower pH (5.6).  相似文献   

18.
Dioxygenases catalyze a diverse range of chemical reactions that involve the incorporation of oxygen into a substrate and typically use a transition metal or organic cofactor for reaction. Bacterial (1H)-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) belongs to a class of oxygenases able to catalyze this energetically unfavorable reaction without any cofactor. In the quinaldine metabolic pathway, HOD breaks down its natural N-heteroaromatic substrate using a mechanism that is still incompletely understood. Experimental and computational approaches were combined to study the initial step of the catalytic cycle. We have investigated the role of the active site His-251/Asp-126 dyad, proposed to be involved in substrate hydroxyl group deprotonation, a critical requirement for subsequent oxygen reaction. The pH profiles obtained under steady-state conditions for the H251A and D126A variants show a strong pH effect on their kcat and kcat/Km constants, with a decrease in kcat/Km of 5500- and 9-fold at pH 10.5, respectively. Substrate deprotonation studies under transient-state conditions show that this step is not rate-limiting and yield a pKa value of ∼7.2 for WT HOD. A large solvent isotope effect was found, and the pKa value was shifted to ∼8.3 in D2O. Crystallographic and computational studies reveal that the mutations have a minor effect on substrate positioning. Computational work shows that both His-251 and Asp-126 are essential for the proton transfer driving force of the initial reaction. This multidisciplinary study offers unambiguous support to the view that substrate deprotonation, driven by the His/Asp dyad, is an essential requirement for its activation.  相似文献   

19.
Relevant production of xylitol by Debaryomyces hansenii requires semiaerobic conditions since in aerobic conditions the accumulated reduced adenine dinucleotide coenzyme is fully reoxidized leading to the conversion of xylitol into xylulose. For oxygen transfer coefficient values from 0.24 to 1.88 min-1, in shake flasks experiments, biomass formation increased proportionally to the aeration rate as shown in the oxygen transfer coefficient and xylose concentration isoresponse contours. The metabolic products under study, xylitol and ethanol were mainly growth associated. However, for oxygen transfer coefficient above 0.5 min-1 higher initial xylose concentration stimulated the rate of production of xylitol. This fact was less evident for ethanol production. The direct relationship between increased biomass and products formation rate, indicated that the experimental domain in respect to the aeration rate was below the threshold level before the decreasing in metabolic production rates reported in literature for xylose-fermenting yeasts. The fact that ethanol was produced, albeit in low levels, throughout the experimental design indicated that the semiaerobic conditions were always attained. Debaryomyces hansenii showed to be an important xylitol producer exhibiting a xylitol/ethanol ratio above four and a carbon conversion of 54% for xylitol.Abbreviations KLa oxygen transfer coefficient - DO(T) dissolved oxygen (tension) - OUR oxygen uptake rate - NAD(H) oxidised (reduced) nicotinamide adenine dinucleotide - NADP(H) oxidised (reduced) nicotinamide adenine dinucleotide phosphate - CRC catabolic reduction charge - C oxygen concentration in the culture medium - C* oxygen concentration at saturation conditions - Yi response from experiment i - parameters of the polynomial model - x experimental factor level (coded units) - R2 coefficient of multiple determination - t time  相似文献   

20.
Chemoautotrophic symbioses, in which endosymbiotic bacteria are the major source of organic carbon for the host, are found in marine habitats where sulfide and oxygen coexist. The purpose of this study was to determine the influence of pH, alternate sulfur sources, and electron acceptors on carbon fixation and to investigate which form(s) of inorganic carbon is taken up and fixed by the gamma-proteobacterial endosymbionts of the protobranch bivalve Solemya velum. Symbiont-enriched suspensions were generated by homogenization of S. velum gills, followed by velocity centrifugation to pellet the symbiont cells. Carbon fixation was measured by incubating the cells with 14C-labeled dissolved inorganic carbon. When oxygen was present, both sulfide and thiosulfate stimulated carbon fixation; however, elevated levels of either sulfide (>0.5 mM) or oxygen (1 mM) were inhibitory. In the absence of oxygen, nitrate did not enhance carbon fixation rates when sulfide was present. Symbionts fixed carbon most rapidly between pH 7.5 and 8.5. Under optimal pH, sulfide, and oxygen conditions, symbiont carbon fixation rates correlated with the concentrations of extracellular CO2 and not with HCO3 concentrations. The half-saturation constant for carbon fixation with respect to extracellular dissolved CO2 was 28 ± 3 μM, and the average maximal velocity was 50.8 ± 7.1 μmol min−1 g of protein−1. The reliance of S. velum symbionts on extracellular CO2 is consistent with their intracellular lifestyle, since HCO3 utilization would require protein-mediated transport across the bacteriocyte membrane, perisymbiont vacuole membrane, and symbiont outer and inner membranes. The use of CO2 may be a general trait shared with many symbioses with an intracellular chemoautotrophic partner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号