首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of N-formyl chemotactic peptides on the Ca2+ influx and efflux were investigated in guinea-pig peritoneal macrophages using an isotope tracer. fMet-Leu-Phe did not enhance the influx of 45Ca2+ into macrophages, whereas it stimulated the efflux of 45Ca2+ from macrophages at concentrations ranging from 10−10 M to 10−7 M. fMet-Met-Met and fMet-Leu also stimulated the 45Ca2+ efflux, albeit at much higher concentrations, while there was no stimulation with fMet. The mitochondrial inhibitors, oligomycin and NaN3, did not modify the 45Ca2+ efflux induced by the chemoattractants, yet they did induce the release of 45Ca2+ from the mitochondria. On the other hand, higher concentrations of the calmodulin antagonists, chlorpromazine and trifluoperazine, induced the release of 45Ca2+ from the NaN3-insensitive Ca2+ store site and mimicked the enhancement of the 45Ca2+ efflux by N-formyl chemotactic peptides. Thus, N-formyl chemotactic peptides appear to increase the levels of intracellular free Ca2+ in guinea-pig peritoneal macrophages, probably by inducing the release of Ca2+ from the NaN3-insensitive Ca2+ store site.  相似文献   

2.
Effects of N-formyl chemotactic peptides on the Ca2+ influx and efflux were investigated in guinea-pig peritoneal macrophages using an isotope tracer. fMet-Leu-Phe did not enhance the influx of 45Ca2+ into macrophages, whereas it stimulated the efflux of 45Ca2+ from macrophages at concentrations ranging from 10?10 M to 10?7 M. fMet-Met-Met and fMet-Leu also stimulated the 45Ca2+ efflux, albeit at much higher concentrations, while there was no stimulation with fMet. The mitochondrial inhibitors, oligomycin and NaN3, did not modify the 45Ca2+ efflux induced by the chemoattractants, yet they did induce the release of 45Ca2+ from the mitochondria. On the other hand, higher concentrations of the calmodulin antagonists, chlorpromazine and trifluoperazine, induced the release of 45Ca2+ from the NaN3-insensitive Ca2+ store site and mimicked the enhancement of the 45Ca2+ efflux by N-formyl chemotactic peptides. Thus, N-formyl chemotactic peptides appear to increase the levels of intracellular free Ca2+ in guinea-pig peritoneal macrophages, probably by inducing the release of Ca2+ from the NaN3-insensitive Ca2+ store site.  相似文献   

3.
Incubation of synaptosomes under conditions which result in complete phosphorylation of membrane bound accepter proteins does not affect the permeability to Na+ or K+ as measured by a spectrophotometric method. This technique was not, however, sensitive enough to determine permeability to Ca2+ which was thus estimated using 45Ca2+. It was found that although phosphorylation did not affect the equilibrium binding of 45Ca it did lower the rate of both Ca2+ uptake and efflux. The most likely interpretation of these results is that phosphorylation of proteins in the synaptic membrane lowers the permeability of the membrane to Ca2+. This could have a role in the regulation of synaptic transmission.  相似文献   

4.
Noradrenaline caused a prompt but transient increase in the rate of45Ca2+ efflux from isolated rat islets of Langerhans perifused in Ca2+ depleted medium. The response was modest in size and was unaffected by isosmotic replacement of NaCl with choline chloride or by inclusion of 0.5 mM dibutyryl cAMP in the perifusion medium, suggesting that it was not mediated by Na+: Ca2+ exchange nor by lowered cAMP. Despite its effect on45Ca2+ efflux, noradrenaline treatment did not alter the kinetics of45Ca2+ efflux in response to the muscarinic agonist, carbamylcholine, nor did it change the magnitude of the response to this agent. Simultaneous introduction of 20 mM glucose with noradrenaline prevented a rise in45Ca2+ efflux and indeed resulted in inhibition of45Ca2+ efflux. The data suggest that noradrenaline does not directly activate the mechanisms which regulate Ca2+ extrusion from islets cells, and they do not support a primary role for the Ca2+ efflux response in mediating adrenergic inhibition of insulin secretion.  相似文献   

5.
The kinetics of 45Ca2+ uptake, efflux, and calcium potentiation of amylase release by slices of rat parotid glands were examined. Pretreatment of the tissue with 11.25 mM 45Ca2+ medium increased the total tissue 45calcium content. Lanthanum (1 mM) decreased tissue uptake, blocked the slow components of exchange and appeared to inhibit transcellular calcium movement. Neither dibutyryl cyclic AMP nor caffeine caused consistently significant effects on 45Ca2+ kinetics, or total 45calcium content. Carbamylcholine increased the initial rate of 45Ca2+ uptake, but had no effect on total uptake.Elevation of the extracellular Ca2+ concentration to 11.25 mM during stimulation of amylase release resulted in an initial decrease in the rate of amylase release followed by a potentiation of release which developed slowly, requiring 40–50 min to reach the maximal response.The inability to detect release-related changes in either calcium influx or mobilization, and the lengthy times and high Ca2+ concentrations required to achieve calcium potentiation suggests that calcium does not couple amylase release.  相似文献   

6.
The utility of the acetoxymethyl esters of two tetracarboxylic acids, fura-2 and quin-2, in the determination of ionic calcium levels within synaptosomes and mitochondria was compared. Synaptosomes and isolated mitochondria both accumulated the esters but mitochondria had a much more limited capacity to hydrolyze them. Dye-loaded synaptosomes maintain their external membrane potential of magnitude similar to values for unloaded controls and do not accumulate radioactive Ca2+ in excess with time. Both fluorescent compounds yielded similar values (about 300–400 nM) for free intrasynaptosomal calcium [Ca2+]i. Mitochondrial Ca2+ could be measured only with fura-2. Isolated mitochondria contained 0.9–1 μM free Ca2+ in a similar extrasynaptosomal medium. Fura-2 tended to overestimate [Ca2+]i while quin-2 tended to underestimate it due to chelation of these dyes with intrasynaptosomal trace elements. Fura-2 requiring the use of two excitation wavelengths was significantly superior to the single wavelength method using quin-2. Advantages included reduced danger of erroneous readings due to (i) synaptosomal sedimentation, (ii) photobleaching of the dye, (iii) underestimation of intrasynaptosomal calcium during correction for dye leakage by manganese entry into synaptosomes. Fura-2 interfered less with synaptosomal Ca2+ transients than quin-2, probably due to lower intrasynaptosomal concentration of dye needed. Both unstimulated and K+-stimulated 45Ca2+ uptake were increased in quin-2-loaded synaptosomes but only K+-stimulated uptake in fura-2 loaded ones. This series of advantages makes fura-2 of superior utility in the determination of free intrasynaptosomal calcium.  相似文献   

7.
It has been suggested that mitochondria might modify transmitter release through the control of intracellular Ca2+levels. Treatments known to inhibit Ca2+retention by mitochondria lead to an increased transmitter liberation in the absence of external Ca2+, both at the frog neuromuscular junction and from isolated nerve endings. Sodium ions stimulate Ca2+efflux from mitochondria isolated from excitable tissues. In the present study, the effect of increasing internal Na+ levels on [3H]γ-aminobutyric acid ([3H]GABa) release from isolated nerve endings is reported. Results show that the efflux of [3H]GABA from prelabeled synaptosomes is stimulated by ouabain, veratrine, gramicidin D, and K+-free medium, which increase the internal sodium concentration. This effect was not observed when Na+ was omitted from the incubation medium and it was independent of external Ca2+, the experiments having been performed in a Ca2+-free, EGTA-containing medium. Since preincubation of synaptosomes with 2,4-diaminobutyric acid did not prevent the stimulatory effect of increased internal Na+ levels on [3H]GABA efflux, it appears to be unrelated to an enhanced activity of the outward carrier-mediated GABA transport. These results suggest that the augmented release of [3H]GABA may be due to an increased Ca2+efflux from mitochondria eiicited by the accumulation of Na+ at the nerve endings. Sandoval M. E. Sodium-dependent efflux of [3H]GABA from synaptosomes probably related to mitochondrial calcium mobilization. J. Neurochem. 35 , 915–921 (1980).  相似文献   

8.
Summary The effect of acidosis on the myocardial Ca2+ distribution was examined at 15°C in ventricular strips of the flounder (Platichthys flesus) and at 30°C in atrial strips of the rat (Rattus norvegicus).Lowering the Ringer pH from 7.6 to 6.9 by increasing its CO2 (flounder 2% to 12%, rat 4% to 14%), resulted in an elevated Ca2+ efflux in resting strips as well as in strips stimulated (12/min) to contraction. A decrease in pH of the Ringer used for the flounder myocardium by a lowering of bicarbonate (30 mM to 5 mM) also resulted in an elevation of the Ca2+ efflux, but the effect was smaller than that produced by an increased CO2.With 11 mM Ca2+ and 10 mM EGTA added to the Ringer to reduce the amount of45Ca2+ bound to extracellular sites, an increased CO2 with a concomitant drop in Ringer pH resulted in an increased Ca2+ efflux in both myocardia. The Ca2+ efflux was only marginally elevated in the flounder myocardium and unchanged in that of rat when the same drop in Ringer pH was produced with a lowering in bicarbonate.In a nominally Ca2+-free Ringer with 0.1 mM EGTA the45Ca2+ efflux was stimulated for both myocardia by an increase in CO2.The flounder myocardium was exposed to high CO2 in a nominally Na+, Ca2+-free Ringer and again the45Ca2+ efflux increased. After a return to Na, Ca and low CO2 in the Ringer, a higher efflux persisted in the strips being subjected to a high CO2 than in the controls.The Ca2+ uptake rate was about the same at high and low CO2 for both myocardia.Based on these results the measured increase in Ca efflux following an increase in CO2 or a decrease in bicarbonate probably results from an elevated cytoplasmatic Ca2+ activity. It seems unlikely that an increased uptake rate of Ca2+ or a direct stimulation of Ca2+ transporting mechanisms in the cell membrane are responsible for the change.  相似文献   

9.
In this study we investigated the prospect of microwave-induced alteration of 45Ca2+ efflux from rat neural tissue at low pulse repetition frequencies and low power densities under in vitro conditions. Rat cerebral tissue, preloaded with 45Ca2+, was exposed to pulsed-microwave radiation (1-GHz carrier frequency) according to one of several PRF-power density exposure schemes: 16 Hz at 0.5, 1.0, 2.0, or 15 mW/cm2, or 32 Hz at 1.0 or 2.0 mW/cm2 average power density. Measurements of radioactivity in the efflux medium and in the tissue sample were used to calculate an efflux value for each sample. The results indicate that the radiation conditions used did not alter calcium efflux in rat brain tissue.  相似文献   

10.
Tumor promoters, such as phorbol myristate acetate (PMA), facilitate carcinogenesis by mechanisms that may involve changes in intracellular Ca2+ metabolism and distribution of Ca2+, as well as activation of a Ca2+-and phospholipid-dependent protein kinase, referred to as protein kinase C. We compared the actions of PMA on GH3 cloned pituitary cells with those of thyrotropin releasing hormone (TRH), an established Ca2+-mobilizing agent. The TRH treatment produced a45Ca efflux, inhibited45Ca uptake, diminished chlortetracycline fluorescence, and stimulated cAMP accumulation and protein synthesis in a Ca2+-dependent manner. Like TRH, PMA produced an efflux of45Ca and inhibited45Ca uptake; however, the phorbol ester stimulated cAMP accumulation and protein synthesis in the absence of external calcium and failed to alter chlortetracycline fluorescence. The TMB-8, a putative inhibitor of the mobilization of membrane-associated Ca2+, did not alter PMA-induced stimulation of protein synthesis. The results suggest that PMA-induced changes in Ca2+ metabolism are not caused by the mobilization of membrane-associated calcium. Alternative proposals are that PMA (1) inhibits Ca2+ influx and/or (2) mobilizes calcium from nonmembranous storage sites. Further study is needed to characterize the mechanism through which tumor-promoting phorbol esters influence Ca2+ metabolism and to ascertain the significance of changes in Ca2+ metabolism to cellular processes affected by these substances.  相似文献   

11.
《Life sciences》1996,58(11):PL217-PL222
The effect of extracellular adenosine 5′-triphosphate (ATP) on Ca2+ efflux from freshly isolated adult rat cardiomyocytes was examined. ATP stimulated the efflux of 45Ca2+ from the cells in a concentration-dependent manner (0.01–1 mM). The 45Ca2+ efflux from the cells was also stimulated by adenosine-5′-O-(3-thiotriphosphate) (ATP-γs) and α,β-methylene-ATP and adenosine 5′-diphosphate, but not by adenosine 5′-monophosphate and adenosine. The ATP-stimulated 45Ca2+ efflux was not affected by deprivation of the extracellular Ca2+, but was dependent on the presence of extracellular Na+. These results indicate that ATP stimulates extracellular Na+-dependent 45Ca2+ efflux from freshly isolated adult rat cardiomyocytes, probably through its stimulatory effect on the plasma membrane P2 purinoceptors which may couple to Na+/Ca2+ exchange.  相似文献   

12.
The significant increase of free calcium concentration ([Ca2+]i) was found in rat cerebral cortex synaptosomes and hippocampal crude synaptosomal fraction after their exposure to glutamate. But no change of [Ca2+]i was revealed in cerebellar synaptosomes, the slight increase of [Ca2+]i in striatal synaptosomes was not significant. The presence of Ng-nitro-L-arginine methyl ester (L-NAME) in the incubation medium practically prevented the increase of [Ca2+]i initiated by glutamate in cerebral cortex synaptosomes, but not in hippocampal ones. The significant diminution of [Ca2+]i in the presence of this inhibitor was shown in striatal synaptosomes exposed to glutamate. Na+,K+-ATPase activity is significantly lower in cerebral cortex, striatal and hippocampal synaptosomes exposed to glutamate. L-NAME prevented the inactivation of this enzyme by glutamate. In cerebellar synaptosomes the tendency to the decrease of enzymatic activity in the presence of L-NAME was on the contrary noticed. Thus, the data obtained provide evidence of the protective effect of NO synthase inhibitor in brain cortex and striatal synaptosomes, but not in cerebellar synaptosomes. Synaptosomes appear to be an adequate model to study the regional differences in the mechanism of toxic effect of excitatory amino acids.  相似文献   

13.
Different techniques for arresting uptake of 45Ca by synaptosomes were compared. 1) Dilution of samples with incubation medium arrested calcium uptake but did not remove extracellularly bound calcium. 2) Dilution with medium containing 0.4 mmol 1?1 LaCl3 not only arrested calcium uptake but also prevented calcium efflux and, if enough time was allowed, displaced extracellular calcium. 3) Dilution with medium containing 3 mmol 1?1 EGTA gave uptake values similar to those obtained with La3+, but only if extensive extraction of calcium was prevented by rapid handling of samples. Results obtained after quenching with La3+ or EGTA showed that calcium uptake by synaptosomes may be a multiphasic process, which emphasizes the need for techniques that allow for satisfactory time resolution.  相似文献   

14.
Summary Calcium efflux was measured in desheathed rabbit vagus nerves loaded with45Ca2+. The effects of extracellular calcium, sodium, phosphate, potassium and lanthanum ions on the calcium efflux were investigated and the distribution of intracellular calcium determined by kinetic analysis of45Ca2+ efflux profiles. The45Ca2+ desaturation curve can be adequately described by three exponential terms. The rate constant of the first component (0.2 min–1) corresponds to an efflux from an extracellular compartment. The two slow components had rate constants of 0.03 and 0.08 min–1 and represent the efflux from two intracellular pools. The amounts of exchangeable calcium in these two pools, after a loading period of 150 min, were 0.170 and 0.102 mmol/kg wet weight, respectively. The total calcium efflux in physiological conditions amounted to about 24 fmol cm–2 sec–1. The magnitude of the two intracellular compartments as well as the total calcium efflux were markedly affected by extracellular phosphate, sodium and lanthanum, whereas the corresponding rate constants remained almost unchanged. Phosphate reversed the effect of sodium withdrawal on the calcium efflux: in the absence of phosphate, sodium withdrawal increased the calcium efflux to 224%, but in the presence of phosphate, sodium withdrawal decreased calcium efflux to 44%. Phosphate also affected the increase in calcium efflux produced by inhibitors of mitochondrial calcium uptake, suggesting that two different mitochondrial pools contribute to the control and regulation of intracellular calcium and of the transmembrane calcium transport.Deceased 18 April 1988  相似文献   

15.
Rincon M  Boss WF 《Plant physiology》1987,84(2):395-398
To determine whether or not inositol trisphosphate (IP3) mobilizes calcium in higher plant cells, we investigated the effect of IP3 on Ca2+ fluxes in fusogenic carrot (Daucus carota L.) protoplasts. The protoplasts were incubated in 45Ca2+-containing medium and the 45Ca2+ associated with the protoplasts was monitored with time. Addition of IP3 (20 micromolar) caused a 17% net loss of the accumulated 45Ca2+ within 4 minutes. There was a reuptake of 45Ca2+ and the protoplasts recovered to their initial value by 10 minutes. Phytic acid (IP6), also stimulated 45Ca2+ efflux from the protoplasts. Both the IP3 and the IP6induced 45Ca2+ efflux were inhibited by the calmodulin antagonist, trifluoperazine.  相似文献   

16.
The addition of 200 nM asialo-orosomucoid to isolated rat hepatocytes caused a temporary reduction (down to 20% of control values) in the rate of influx of 45Ca2+ ions in the cells. After 5 min the rate of influx gradually returned to control values. The change in influx rates was dose-dependent. The rate of efflux of calcium ions from cells previously loaded with 45Ca2+ was reduced by 20%. Asialo-fetuin had qualitatively the same effect as asialo-orosomucoid; native fetuin produced no changes.  相似文献   

17.
The addition of 200 nM asialo-orosomucoid to isolated rat hepatocytes caused a temporary reduction (down to 20% of control values) in the rate of influx of 45Ca2+ ions in the cells. After 5 min the rate of influx gradually returned to control values. The change in influx rates was dose-dependent. The rate of efflux of calcium ions from cells previously loaded with 45Ca2+ was reduced by 20%. Asialo-fetuin had qualitatively the same effect as asialo-orosomucoid; native fetuin produced no changes.  相似文献   

18.
Unfractionated and low buoyant density sarcoplasmic reticulum vesicles released calcium spontaneously after ATP- or acetyl phosphate-supported calcium uptake when internal Ca2+ was stabilized by the use of 50 mM phosphate as calcium-precipitating anion. This spontaneous calcium release could not be attributed to falling Ca2+ concentration outside the vesicles (Ca02+), substrate depletion, ADP accumulation, nonspecific membrane deterioration or the attainment of a high vesicular calcium content. Instead, spontaneous calcium release was directly proportional to Ca02+ at the time that calcium content was maximal. A causal relationship between high Ca02+ and spontaneous calcium release was suggested by the finding that elevation of Ca02+ from less than 1 μM to 3–5 μM increased the rate and extent of calcium release.The spontaneous calcium release was due both to acceleration of calcium efflux and slowing of calcium influx that was not accompanied by a significant change in the rate of ATP hydrolysis. Neither reversal of the transmembrane KCl gradient nor incubation with cation and proton ionophores abolished the spontaneous calcium release. The persistence of calcium release under conditions where the membrane was permeable to both anions and cations makes it unlikely that this phenomenon is due to a changing transmembrane potential.  相似文献   

19.
The characteristics of Ca2+ transport across the excitable membrane of Paramecium aurelia were studied by measuring 45Ca2+ influx and efflux. The intracellular concentration of free Ca2+ in resting P. aurelia was at least ten times less than the extracellular concentration. Ca2+ influx was easily measurable at 0°C, but not at 23°C. The influx of 45Ca2+ was stimulated by the same conditions which cause membrane depolarization and ciliary reversal. Addition of Na+ and K+ (which stimulate ciliary reversal) resulted in a 10-fold increase in the rate of Ca2+ influx. An externally applied, pulsed, electric field (1–2 mA/cm2 of electrode surface), caused the rate of Ca2+ influx to increase 3–5 times, with the extent of stimulation dependent on the current density and the pulse width Ca2+ influx had the characteristics of a passive transport system and was associated with the chemically or electrically triggered Ca2+ “gating” mechanism, which has been studied electrophysiologically. In contrast, Ca2+ efflux appeared to be catalyzed by an active transport system. With cells previously loaded at 0°C with 45Ca2+, Ca2+ efflux was rapid at 23°C, but did not occur at 0°C. This active Ca2+ efflux mechanism is probably responsible for maintaining the low internal Ca2+ levels in unstimulated cells.  相似文献   

20.
Summary The effects of various lysophospholipids on the calcium transport activity of sarcoplasmic reticulum (SR) from rabbit skeletal and canine cardiac muscles were examined. The lipids decreased calcium transport activity in both membrane types; the effectiveness being in the order lysoPC > lsyoPS, lysoPG > lysoPE. The maximum inhibition induced by lysoPC, lysoPG and lysoPS was greater than 85% of the normal Ca2+-transport rate. In cardiac SR lysoPE had a maximal inhibition of about 50%. Half maximal inhibition of calcium transport by lysoPC was achieved at 110 nmoles lysoPC/mg SR. At this concentration of lysoPC, the (Ca2+ + Mg2+)-ATPase and Ca2+-uptake activities were inhibited to the same extent (about 60%) in skeletal sarcoplasmic reticulum, while in cardiac sarcoplasmic reticulum, there was less than 20% inhibition of the Ca2+ + Mg2+-ATPase activity. Studies with EGTA-induced passive calcium efflux showed that up to 200 nmoles lysoPC/mg SR did not alter calcium permeability significantly in cardiac sarcoplasmic reticulum. In skeletal muscle membranes the lysophospholipid mediated decrease in calcium uptake correlated well with the increase in passive calcium efflux due to lysophosphatidylcholine. The difference in the lysophospholipid-induced effects on the sarcoplasmic reticulum from the two muscle types probably reflects variations in protein and other membrane components related to the respective calcium transport systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号