首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Deletions of gene sequences in chromosome 7 of the mouse are known to interfere with biochemical and cellular development differentiation with lethal effects in homozygotes. The presence of the corresponding wild-type alleles in Cattanach's translocation (chromosomes 7 to X) is able to “rescue” potentially lethal females if they are made heterozygous for the translocation-carrying X chromosome. This holds true for those chromosome 7 deletions with perinatally lethal effects, whereas “rescue” is not readily accomplished with the deletions that cause early embryonic lethality. Females homozygous for the relevant deletion sequences and heterozygous for the translocation-carrying X chromosome are mosaics of two cell types: those in which the wild-type alleles included in the translocated piece complement the depleted sequences, resulting in a normal cellular phenotype, and those with the ordinary X chromosome expressing the lethal phenotype. The developmental interactions between the two cell types and their role in the mechanisms responsible for survival of females homozygous for lethal deletions are discussed. The failure of “rescue” of embryonic lethals reflects as yet unknown temporal and functional aspects of X-inactivation early embryogenesis.  相似文献   

2.
《Epigenetics》2013,8(2):204-211
During mouse development, imprinted X chromosome inactivation (XCI) is observed in preimplantation embryos and is inherited to the placental lineage, whereas random XCI is initiated in the embryonic proper. Xist RNA, which triggers XCI, is expressed ectopically in cloned embryos produced by somatic cell nuclear transfer (SCNT). To understand these mechanisms, we undertook a large-scale nuclear transfer study using different donor cells throughout the life cycle. The Xist expression patterns in the reconstructed embryos suggested that the nature of imprinted XCI is the maternal Xist-repressing imprint established at the last stage of oogenesis. Contrary to the prevailing model, this maternal imprint is erased in both the embryonic and extraembryonic lineages. The lack of the Xist-repressing imprint in the postimplantation somatic cells clearly explains how the SCNT embryos undergo ectopic Xist expression. Our data provide a comprehensive view of the XCI cycle in mice, which is essential information for future investigations of XCI mechanisms.  相似文献   

3.
During mouse development, imprinted X chromosome inactivation (XCI) is observed in preimplantation embryos and is inherited to the placental lineage, whereas random XCI is initiated in the embryonic proper. Xist RNA, which triggers XCI, is expressed ectopically in cloned embryos produced by somatic cell nuclear transfer (SCNT). To understand these mechanisms, we undertook a large-scale nuclear transfer study using different donor cells throughout the life cycle. The Xist expression patterns in the reconstructed embryos suggested that the nature of imprinted XCI is the maternal Xist-repressing imprint established at the last stage of oogenesis. Contrary to the prevailing model, this maternal imprint is erased in both the embryonic and extraembryonic lineages. The lack of the Xist-repressing imprint in the postimplantation somatic cells clearly explains how the SCNT embryos undergo ectopic Xist expression. Our data provide a comprehensive view of the XCI cycle in mice, which is essential information for future investigations of XCI mechanisms.  相似文献   

4.
We have used a sensitive electrophoretic technique for estimating the activity, or ratio, of two allozymes of the X-chromosome-linked enzyme phosphoglycerate kinase (PGK-1), in order to investigate the randomness of X-chromosome expression in the derivatives of the three primary cell lineages of the early mouse conceptus. The maternally derived Pgk-1 allele is preferentially expressed in the derivatives of the primitive endoderm and trophectoderm lineages at 6 1/2 days post coitum in Pgk-1a/Pgk-1b heterozygous conceptuses, and in the one informative 5 1/2-day heterozygous conceptus analysed. This evidence for preferential expression of the maternally derived X chromosome (Xm), so soon after the time of X-chromosome inactivation, favors the possibility that the preferential expression of Xm is a consequence of primary non-random X-chromosome inactivation, rather than a secondary selection phenomenon. The majority of embryos analysed at 4 1/2 and 5 1/2 days pc produced only a single PGK-1 band, corresponding to the allozyme produced by the Pgk-1 allele on Xm, although 50% of these embryos should have been heterozygous females. Possible explanations are discussed.  相似文献   

5.
Triploidy is a lethal condition in mammals, with most dying at some stage between implantation and term. In humans, however, a very small proportion of triploids are liveborn but display a wide range of congenital abnormalities. In particular, the placentas of human diandric triploid embryos consistently display “partial” hydatidiform molar degeneration, while those of digynic triploids generally do not show these histopathological features. In mice, the postimplantation development of diandric and digynic triploid embryos also differs. While both classes are capable of developing to the forelimb bud stage, no specific degenerative features of their placentas have been reported. Diandric triploid mouse embryos are morphologically normal while digynic triploid mouse embryos consistently display neural tube and occasionally cardiac abnormalities. Previously it was shown that the preimplantation development of micromanipulated diandric triploid mouse embryos was similar to developmentally matched diploid control embryos. In this study, the preimplantation development of micromanipulated digynic triploid mouse embryos is analysed and compared with that of diandric triploid mouse embryos in order to determine whether there is any difference in cleavage rate between these two classes of triploids. Standard micromanipulatory procedures were used to insert a female or a male pronucleus into a recipient diploid 1-cell stage embryo. The karyoplast was fused to the cytoplasm of the embryo by electrofusion. These tripronucleate 1-cell stage embryos were then transferred to pseudopregnant recipients and, at specific times after the HCG injection to induce ovulation, the embryos were recovered and total cell counts made. These results were plotted and regression lines drawn. An additional control group of embryos was subjected to similar micromanipulatory procedures to those used in the experimental study. These embryos had a single pronucleus removed and this was then reinserted into the perivitelline space. Diploidy was immediately restored by electrofusion. These embryos were transferred to recipients and at specific times after the HCG injection the embryos were recovered and total cell counts made. These results were also plotted and regression lines drawn. The results show that the cell doubling time of the digynic triploid embryos was 14.84 h (± 1.19). This was not significantly different from that of the diandric triploid embryos (13.55 h ± 0.86; P > 0.05) or of the manipulated diploid controls (12.12 h ± 0.79; P > 0.05). © 1993 Wiley-Liss, Inc.  相似文献   

6.
7.
X chromosome reactivation and regulation in cloned embryos   总被引:11,自引:0,他引:11  
Somatic cell nuclear transfer embryos exhibit extensive epigenetic abnormalities, including aberrant methylation and abnormal imprinted gene expression. In this study, a thorough analysis of X chromosome inactivation (XCI) was performed in both preimplantation and postimplantation nuclear transfer embryos. Cloned blastocysts reactivated the inactive somatic X chromosome, possibly in a gradient fashion. Analysis of XCI by Xist RNA and Eed protein localization revealed heterogeneity within cloned embryos, with some cells successfully inactivating an X chromosome and others failing to do so. Additionally, a significant proportion of cells contained more than two X chromosomes, which correlated with an increased incidence of tetraploidy. Imprinted XCI, normally found in preimplantation embryos and extraembryonic tissues, was not observed in blastocysts or placentae from later stage clones, although fetuses recapitulated the Xce effect. We conclude that, although SCNT embryos can reactivate, count, and inactivate X chromosomes, they are not able to regulate XCI consistently. These results illustrate the heterogeneity of epigenetic changes found in cloned embryos.  相似文献   

8.
Current in vitro culture methods for mouse embryos are critically dependent on specially prepared rodent serum. Rodent serum requires careful preparation and stringent assessment of serum quality, while commercially available whole embryo culture serum is expensive and shows considerable lot variability. Thus, preparation and testing of suitable serum represents a considerable investment of time and resources, particularly for laboratories with only short-term embryo culture requirements. In addition, serum supplementation of culture medium may introduce unknown serum components that could interfere with interpretation of experimental results, especially where the study is geared towards analysis of a specific growth factor. Here we describe the composition of a standardized serum free culture medium comprised of commercially available stem cell media supplements. With this method, we have successfully cultured midgestation stage mouse embryos and demonstrated, using both morphological and gene expression criteria, that these embryos exhibited proper developmental progression. We believe this method to be a significant advance in whole embryo culture technology that will be of particular use to laboratories needing to utilize whole embryo culture to study midgestation organogenesis.  相似文献   

9.
10.
In female mouse embryos, the paternal X chromosome (Xp) is preferentially inactivated during preimplantation development and trophoblast differentiation. This imprinted X-chromosome inactivation (XCI) is partly due to an activating imprint on the maternal X chromosome (Xm), which is set during oocyte growth. However, the nature of this imprint is unknown. DNA methylation is one candidate, and therefore we examined whether disruptions of the two de novo DNA methyltransferases in growing oocytes affect imprinted XCI. We found that accumulation of histone H3 lysine-27 trimethylation, a hallmark of XCI, occurs normally on the Xp, and not on the Xm, in female blastocysts developed from the mutant oocytes. Furthermore, the allelic expression patterns of X-linked genes including Xist and Tsix were unchanged in preimplantation embryos and also in the trophoblast. These results show that a maternal disruption of the DNA methyltransferases has no effect on imprinted XCI and argue that de novo DNA methylation is dispensable for Xm imprinting. This underscores the difference between imprinted XCI and autosomal imprinting.  相似文献   

11.
One-cell and two-cell embryos from three random-bred strains of mice–CF1, Dub:(ICR), and CFW (Swiss-Webster)–were cultured to the blastocyst stage in Spindle's, Earle's, Ham's F10, Whittingham's T6, or Hoppe and Pitts' medium. CFW embryos were more successful than CF1 and Dub:(ICR) embryos in developing to the blastocyst stage in all five media. Dub:(ICR) and CFW two-cell embryos showed the best development in Spindle's, Whittingham's T6, and Hoppe and Pitts', whereas CF1 two-cell embryos were most successful in developing in Hoppe and Pitts' medium. Similar results were obtained with one-cell embryos, although fewer developed to the blastocyst stage, and T6 rather than Hoppe and Pitts' medium sustained the best development of CF1 one-cell embryos. For all strains, the least successful development was in Ham's F10, but CFW embryos did show good development in this medium. In addition to the effects of various media on mouse embryo development, our results indicate that the strain of mouse used for the bioassay of media is of critical importance. Random-bred CFW (Swiss-Webster) mice are as suitable as a hybrid strain for this purpose.  相似文献   

12.
13.
One of the two X chromosomes is inactivated in female eutherian mammals. MacroH2A, an unusual histone variant, is known to accumulate on the inactive X chromosome (Xi) during early embryo development, and can thus be used as a marker of the Xi. In this study, we produced a transgenic mouse line expressing the mouse MacroH2A1.2–enhanced green fluorescent protein (EGFP) fusion protein (MacroH2A–EGFP) under the control of a CAG promoter and verified whether MacroH2A–EGFP would be useful for tracing the process of X chromosome inactivation by visualizing Xi noninvasively in preimplantation embryos. In transgenic female mice, MacroH2A–EGFP formed a fluorescent focus in nuclei throughout the body. In female blastocysts, the MacroH2A–EGFP focus colocalized with Xist RNA, well known as a marker of Xi. Fluorescence marking of Xi was first observed in some embryonic cells between the 4‐ and 8‐cell stages. These results demonstrate that MacroH2A can bind to the Xi by around the 8‐cell stage in female mouse embryos. These MacroH2A–EGFP transgenic mice might be useful to elucidate the process of X chromosome inactivation during the mouse life cycle. genesis 51:259–267. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
对一蚕豆病遗传家系的G6PD基因突变进行分析,检测突变后G6PD酶活变化,并对先证者家系进行X染色体失活(XCI)偏移模式检测,从而预测G6PD突变女性携带者患蚕豆病的风险。取家系成员的外周血样,并提取基因组DNA,用聚合酶链式反应(PCR)和DNA测序法进行序列分析,确定先证者突变位点和突变类型及家庭成员遗传情况,若先证者的母亲和姐姐为G6PD突变携带者,则对先证者母亲和姐姐进行X染色体偏移检测以及酶活检测分析,以评估携带者患蚕豆病的风险,同时对研究对象进行随访。结果患者X染色体上G6PD基因发生点突变c.1376G>T;酶活性检测结果显示该突变使G6PD酶活性下降大约25%,导致蚕豆病发生。该家系的两位女性携带者X染色体失活偏移<80%,未来发生蚕豆病的可能性低。  相似文献   

15.
16.
Recent studies have suggested that growth factors and hormones play important roles in cell prolif-eration and differentiation during early embryonic development. In the present study, we examined the expression and localization of insulin in the mouse oocytes and one-cell stage embryos by quantitative ELISA, RT-PCR, Western blot and immunofluorescence. In the mouse oocytes and one-cell stage em-bryos, expression of insulin was uniformly distributed in the cytoplasm. We also examined the expres-sion, activity and localization of mTOR (mammalian target of rapamycin) and p70S6K. The expression of mTOR and p70S6K was not significantly different at the cell cycle of mouse one-cell stage embryos. mTOR and S6K were distributed evenly in the cytoplasm at G1, G2 and M phase phase, but at S phase, the distribution of mTOR and S6K was around the pronucleus. At different phases, the activity of mTOR fluctuated. We also used the PI3K specific inhibitor-Wortmannin to investigate the cleavage rate of eggs. The result showed that the rate obviously decreased. When the mTOR specific inhibitor Rapa-mycin was used, the first mitotic division of the mouse one-cell stage embryo was delayed. These re-sults suggested that insulin was expressed both in mouse oocytes and one-cell stage embryos, and may play functional roles in regulation of mouse early embryogenesis by activating the signal pathway of PI3K/PKB/mTOR/S6K.  相似文献   

17.
18.
19.
20.
Apoptosis is the most important inducement and modulator for embryos in the early stage of fetation, i.e. after the 8-cell stage, mostly the morula and blastula stage, to proceed to the stage of nonlinear development. Using a two-photon laser scanning microscopy (TPLSM) system, we obtained 3-dimensional (3D) fluorescent images of preimplantation mouse embryos. A model for quantification was established. The statistical results for the spatial location of apoptosis bodies in embryos was obtained following image processing, as well as investigation of the kinetics of apoptosis. It was found that most (70%) apoptosis occurred in the trophectoderm, and the departure between the centroid and geometric center of embryos had a step transition when embryos developed into the 32-cell stage, which was consistent with the theoretical prediction that the blastocele would induce a symmetry break of the distribution of cells in embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号