首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quasielastic light scattering and electrophoretic light scattering experiments were performed on chicken erythrocyte polynucleosome solutions at various temperatures and ionic strengths. The apparent diffusion coefficient, Dapp, was found to depend on the scattering vector K. In general, Dapp can be described as a damped oscillatory function of K in the ionic strength range of 10 to 60 mM and over the temperature range of 10 to 40°C. Electrophoretic light scattering studies on total digest chromatin samples indicate the apparent charge on the polynucleosomes increases as the ionic strength is lowered from 10 to 1 mM. These data are interpreted in terms of fluctuations in the surface charge distribution of the polyion and subsequent inducement of an asymmetric distribution of small ions about the polyion. These fluctuation components lead to the formation of “clusters” of polyions.  相似文献   

2.
3.
Circular dichroism has been commonly employed to infer the conformation of DNA in solution. The basis of the conformational assignments is the work of Tunis-Schneider and Maestre, wherein CD spectra of DNA were obtained under conditions comparable to those employed in the x-ray diffraction studies of A-, B-, and C-DNA. It has recently been suggested that the CD spectrum of DNA in chromatin, which is similar to the CD spectrum of the C-form DNA, is a superposition of the normal B-DNA spectrum and a single negative band, centered at 275 nm. This negative band is qualitatively identical to the spectrum for condensed Ψ-form DNA. We have employed the hydrodynamic methods of quasielastic light scattering and sedimentation velocity to determine the extent of DNA tertiary structural alteration in 5.5M LiCl as a possible explanation of the C-form CD spectrum. These studies suggest an eightfold contraction of the Stokes hydrodynamic volume for calf thymus DNA in going from 0.4M NH4Ac to 5.5M LiCl, with no change in molecular weight. The estimated maximum presistence length of DNA in 5.5M LiCl is estimated to be 20.0 nm compared to the “minimum” value of 44.7 nm in NaCl solutions. The value 20.0 nm corresponds to a maximum radius of 16.7 nm for a “continuously coiled” cylinder of DNA, which compares with the value 5.0 nm of DNA in the nucleosome unit of chromatin.  相似文献   

4.
The time dependence of the orientation of a cylindrical biopolymer and the configuration of its counterion complement in the presence of an external electric field is found by solving a model forced diffusion equation. The solution is a high temperature expansion in the external field strength and is used to predict the nature of the dielectric relaxation and the dynamic Kerr effect for such systems. Specific application is made to the dynamic Kerr effect of a DNA oligomer for which experimental data appear in the literature. The analysis yields a value for the surface diffusion coefficient of a sodium ion on DNA at 20 degrees C of 3.8 x 10(-10) m2 s-1.  相似文献   

5.
Widespread applications of dynamic light scattering techniques to the study of macromolecular Brownian motion have yielded not only a valuable store of factual information concerning solution conformations and conformational changes, but have also provided an important window through which to view the dynamics of internal modes of motion. These techniques have coincided with a resurgence of interest in the solution physical chemistry of macromolecules, including hydrodynamic properties, and the profound effect of intermolecular interactions on both the disposition and dynamics of macromolecules in solution.  相似文献   

6.
The structural properties of H1-depleted oligonucleosomes are investigated by the use of quasielastic laser light scattering, thermal denaturation and circular dichroism and compared to those of H1-containing oligomers. To obtain information on the role of histone H1 in compaction of nucleosomes, translational diffusion coefficients (D) are determined for mono-to octanucleosomes over a range of ionic strength. The linear dependences of D on the number of nucleosomes show that the conformation of stripped oligomers is very extended and does not change drastically with increasing the ionic strength while the rigidness of the chain decreases due to the folding of linker DNA. The results prove that the salt-induced condensation is much smaller for H1-depleted than for H1-containing oligomers and that histone H1 is necessary for the formation of a supercoiled structure of oligonucleosomes, already present at low ionic strength.  相似文献   

7.
The equilibrium Kerr effect of a system of mobile charges constrained to the surface of biomacromolecules is calculated. Cylindrical and spherical geometries are considered. For the cylinder we determine the anisotropy of electric polarizability as a function of length, temperature, and number of charged species in the low-field regime, and the fraction of the maximum induced dipole in the field direction for higher electric fields. The results are compared to experimental data for DNA oligomers taken from the literature. With spherical geometry we calculate the fractional induced dipole moment as a function of electric field strength and from this deduce the orientation function. The field dependence of the orientation function is compared to experimental data in the literature for bovine disk membrane vesicles.  相似文献   

8.
9.
Bacteriorhodopsin of halobacterial purple membranes exhibits conformational flexibility in high electric field pulses (1-30 x 10(5) V m(-1), 1-100 micros). High-field electric dichroism data of purple membrane suspensions indicate two kinetically different structural transitions within the protein; involving a rapid (approximately 1 micros) concerted change in the orientation of both retinal and tyrosine and/or tryptophan side chains concomitant with alterations in the local protein environment of these chromophores. as well as slower changes (approximately 100 micros) of the microenvironment of aromatic amino acid residues concomitant with pK changes in at least two types of proton-binding sites. Light scattering data are consistent with the maintenance of the random distribution of the membrane discs within the short duration of the applied electric fields. The kinetics of the electro-optic signals and the steep dependence of the relaxation amplitudes on the electric field strength suggest a saturable induced-dipole mechanism and a rather large reaction dipole moment of 1.1 x 10(-25) C m ( = 3.3 x 10(4) debye) per cooperative unit at E = 1.3 x 10(5) V m(-1), which is indicative of appreciable cooperativity in the probably unidirectional transversal displacement of ionic groups on the surfaces of and within the bacteriorhodopsin proteins of the membrane lattice. The electro-optic data of bacteriorhodopsin are suggestive of a possibly general, induced-dipole mechanism for electric field-dependent structural changes in membrane transport proteins such as the gating proteins in excitable membranes or the ATP synthetases.  相似文献   

10.
Quasielastic light scattering is used to study the effect of ionic strength on the dynamic behaviour of DNA. In a first approach the spectrum of scattered light is analyzed in terms of a single relaxation process. The large difference between the observed behaviour and that expected according to a pure diffusional process reflects the contribution associated with internal modes, which increases with decreasing ionic strength. Such behaviour is better analyzed in terms of a double relaxation process by using two relaxation times, the reciprocals of which are equal to DK2 and DK2 + τi?1 (K), respectively, where τi (K) is an average value describing the set of modes observed at a given K value. Relative intensity and relaxation times, which are the more accurate parameters, were used to interpret the results. The observed increase of the relative contribution of internal modes with decreasing ionic strength is actually a relative decrease of the diffusional contribution induced by a corresponding increase of the radius of gyration RG. On the other hand, the reciprocal τi?1 (K) of the relaxation time is a linear function of K2 in the analyzed KRG range and is insensitive to ionic strength between 10?2M and 1M. These results, when discussed according to Rouse's model, lead to define for each value of τi?1 (K) a corresponding mean-squared equilibrium length 〈μ〉 which is found to be a linear function of K?2.  相似文献   

11.
Diffusion studies of bovine serum albumin by quasielastic light scattering   总被引:5,自引:0,他引:5  
T Raj  W H Flygare 《Biochemistry》1974,13(16):3336-3340
  相似文献   

12.
T Piekenbrock  E Sackmann 《Biopolymers》1992,32(11):1471-1489
In the first part of this work we report quasielastic light scattering (QELS) studies of the internal dynamics of transient actin networks over a time range of 10(-6)-10(-2) s, scattering angles between zeta = 20 degrees and 150 degrees, and a concentration range of 0.015 (0.3) to 0.7 mg/mL (15 microM). We confirm our previous result that (1) the dynamic structure factor g(q,t) is determined by the thermally excited undulations of the actin filaments and (2) that the initial decay of g(q, t) scales as g(q, t) varies; is directly proportional to exp(-q alpha t) while the long time decay scales as g(q, t) varies; is directly proportional to exp [-(Aq alpha t) 2/3] with alpha = 2.75. The deviation of alpha from the theoretical value of alpha = 3 predicted for Rouse-Zimm chains is similar to that found for high molecular weight macromolecular solutions by QELS. A refined analysis of the dynamic structure factor showed that it can be interpreted in terms of three relaxation processes (besides the contribution of the residual monomer diffusion): (1) the dominant Rouse-Zimm dynamics, which comprises between 65 (at high concentrations) and 85% of the signal; (2) a fast relaxation process with a decay constant of gamma = 9 x 10(3) s-1, which contributes at all concentrations with the same amplitude; and (3) a nonexponential ultraslow contribution of the form g(us) varies; is directly proportional to exp [(-gamma ust)]1/4. The third contribution appears only at high concentrations and increases strongly with decreasing scattering angles. It is thus attributed to fluctuations of the mesh size of the transient actin network. In the second part we show that high sensitivity QELS may be applied to follow the actin polymerization process at low temperatures (10 degrees C). The apparent diffusion coefficient and the static scattering intensity of the actin filaments were determined as functions of polymerization time tpol. We show that the process consists of the rapid growth of a few filaments that become very long (approximately 10 microns; even at actin concentrations of 0.04 micrograms/mL) near the critical growth concentration of 0.012 micrograms/mL, as is expected for a growth process determined by nucleation. Finally, we studied actin networks polymerized in the presence of complexes of gelsolin with actin. By application of the CONTIN program we could determine the length distribution of the filaments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Laboratory-made samples of the polysaccharide xylinan, also called acetan, were studied in aqueous solution at various ionic strengths I (0.01 mol/L ≤ I ≤ 0.30 mol/L). The conditions for clarification (ultracentrifugation/membrane filtration) were studied. The Zimm procedure was used to obtain the average molar mass, the second virial coefficient, and the radius of gyration. The interpretation of the angular dependence of scattered light by fitting with “Master Curves” led to double-stranded wormlike chains with persistence lengths between 90 and 120 nm. The ionic strength had a strong effect on the thermodynamic second virial coefficient, but the overall structure remained unchanged. The ambiguity of the light scattering data was discussed assuming alternatively a two-component system instead of the wormlike chain model for the experimental scattering curves. The two-component system can be ruled out on the basis of model calculations. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Chemotactic effects of dissolved oxygen on motions of Escherichia coli in a motility buffer solution have been studied by measurements of quasielastic light scattering. Under conditions where the bacteria form a sharp band in an oxygen concentrations gradient created by their metabolism, components of motions along the direction of the gradient and perpendicular to it were studied separately at each point within the band profile. A theoretical model for bacterial self correlation function based on two-state motions has been developed to extract the mean square speed of run motion and the relative probability of twiddle vs. run at each point of the band profile. A combined novel experimental set-up and new data analysis method allowed us to extract also the mean square displacements at short times along and perpendicular to the direction of the gradient. Parameters extracted from the measured correlation functions have been discussed in the framework of the established picture of bacterial motions under chemotaxis.  相似文献   

15.
Membrane fusion is a key step in the virus mediated cell fusion. The vesicular dispersion serves as a model system to study the membrane fusion. We employed dynamic and static light scattering to study the fusion of phosphatidylcholine vesicles in the presence of model fusion peptide fragments from the hemagglutinin HA2 protein. The fusion-induced aggregation under the present experimental setup exhibited strong pH dependence, similar to the parental viral protein. Replacement of the glycine residue at the extreme amino terminus by glutamic acid (G1E) abolished fusion activity. The average molecular mass and diameter of vesicular dispersion obtained from static and dynamic light scattering measurements respectively at neutral and acidic pH showed about three fold increase in acidic solution containing wild type fusion peptide. The light scattering data are consistent with lipid mixing results. The present work demonstrates the utility of light scattering as a facile means to monitor the fusion process.  相似文献   

16.
Research efforts in recent years have been directed toward actively controlling the direction of translocation of microtubules on a kinesin-coated glass surface with E-fields (electric fields), opening up the possibility of engineering controllable nanodevices that integrate microtubules and motor proteins into their function. Here, we present a detailed, biophysical model that quantitatively describes our observations on the steering of microtubules by electric fields. A sudden application of an electric field parallel to the surface and normal to the translocation direction of a microtubule bends the leading end toward the anode, because Coulombic (electrophoretic) forces are dominant on negatively charged microtubules. Modeling this bending as a cantilever deflection with uniform loading requires accurate mechanical and electrical properties of microtubules, including their charge density, viscous drag, and flexural rigidity. We determined the charge density of microtubules from measurements of the electrophoretic mobility in a “zero flow” capillary electrophoresis column and estimate it to be 256 e per micron of length. Viscous drag forces on deflecting microtubules in electroosmotic flows were studied theoretically and experimentally by directly characterizing flows using a caged dye imaging method. The flexural rigidity of microtubules was measured by applying E-fields to microtubules with biotinylated segments that were bound to streptavidin-coated surfaces. From the calculated loading, and the Bernoulli-Euler curvature and moment equation, we find that the flexural rigidity of microtubules depends on their length, suggesting microtubules are anisotropic. Finally, our model accurately predicts the biophysical properties and behavior of microtubules directed by E-fields, which opens new avenues for the design of biomolecular nanotransport systems.  相似文献   

17.
Two new applications of the recently developed technique of composition gradient static light scattering (CG-SLS) are presented. 1), The method is demonstrated to be capable of detecting and quantitatively characterizing reversible association of chymotrypsin and bovine pancreatic trypsin inhibitor in a solution mixture and simultaneously occurring reversible self-association of chymotrypsin at low pH in the same mixture. The values of equilibrium constants for both self- and heteroassociation may be determined with reasonable precision from the analysis of data obtained from a single experiment requiring <15 min and <1 mg of each protein. 2), Analysis of the results of a single CG-SLS experiment carried out on Ftsz, a protein that self-associates to form linear oligomers of indefinite size in the presence of guanosine diphosphate, yields the dependence of the equilibrium constant for monomer addition upon oligomer size.  相似文献   

18.
Metabolic activity in eukaryotic cells is known to naturally oscillate. We have recently observed a 20-s period NAD(P)H oscillation in neutrophils and other polarized cells. Here we show that when polarized human neutrophils are exposed to interferon-gamma or to ultra-low-frequency electric fields with periods double that of the NAD(P)H oscillation, the amplitude of the NAD(P)H oscillations increases. Furthermore, increases in NAD(P)H amplitude, whether mediated by interferon-gamma or by an oscillating electric field, signals increased production of reactive oxygen metabolites. Hence, amplitude modulation of NAD(P)H oscillations suggests a novel signaling mechanism in polarized cells.  相似文献   

19.
20.
Complexation between lysozyme and sodium poly(2-acrylamido-2-methylpropanesulfonate) (PAMPS) was studied by quasielastic light scattering, electrophoretic light scattering, fluorescence, and turbidimetry in electrolyte solution. These techniques show that complexation occurs at pH 9.6 in an ionic strength buffer of 0.25M NaCl + 25 mM Na2B4O7. At constant lysozyme concentration (Cpro). The structure of the complex depends on the polymer concentration. At low polymer concentration (relative to Cpro), an intrapolymer complex is formed. This intrapolymer complex aggregates to an interpolymer species upon increase in polymer concentration. Complex formation was also studied by fluorescence using pyrene-labeled PAMPS (Py-PAMPS). Energy transfer from singlet-excited tryptophan residues in lysozyme to the pyrene label occurs when the complex is formed. Fluorescence and turbidity data indicate that lysozyme interacts with Py-PAMPS preferentially at pyrene sites, which leads to static quenching of tryptophan fluorescence via energy transfer to the pyrene label. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号