首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein actinoxanthin (molecular weight 10,300) crystallizes in space group P212121, with cell dimensions a = 30.9 Å, b = 48.8 Å, c = 64.1 Å, and z = 4. The three-dimensional structure of actinoxanthin at 4-Å resolution was determined by x-ray methods on the basis of experimental data from the native protein and five isomorphous derivatives. At the stage of solving the phase problem, the heavy atoms in the derivatives were located using direct methods. The actinoxanthin molecule can be described as an oblate ellipsoid with approximate dimensions 20 × 30 × 40 Å and consists of two different sizes of folded units separated by a well-defined cleft. The larger unit, including the N- and C-terminals of the protein chain, is characterized by a significant content of β-sheet structure. The smaller unit, containing two deca- and hexapeptide cycles closed by disulfide bonds, has a mainly irregular structure.  相似文献   

2.
M Suwalsky  M Bunster 《Biopolymers》1975,14(6):1197-1204
An X-ray study of the synthetic polypeptide poly(L -homoarginine hydrochloride) has been made to investigate whether, like the chemically related polypeptides poly(L -lysine hydrochloride), poly(L -arginine hydrochloride), and poly(L -ornithine hydrobromide), it can undergo conformational transitions merely from variations in its degree of hydration. X-ray photographs of powder and oriented specimens containing one to 15 molecules of water per L -homoarginine hydrochloride residue showed that this polymer forms only a β-pleated-sheet structure. The pleated sheets, formed by antiparallel polypeptide chains hydrogen-bonded to each other, are piled up along the b axis in an alternating sequence (“sandwich structure”). This structure did not appreciably change with variations of the degree of hydration, and the observed reflections at 56% relative humidity (1.8 molecules of water per residue) could be indexed satisfactorily in terms of a monoclinic unit cell, of space group P21, with a = 9.34 Å, b = 40.07 Å, c = 6.94 Å, and γ = 106°. These dimensions are shown by models to be compatible with the proposed structure, and the calculated density of 1.27 g/cm3 agrees well with the experimental value of 1.29 g/cm3. Removal of the last molecule of water results in a very diffuse pattern, while specimens containing 20 molecules of water per residue show only reflections due to water.  相似文献   

3.
The solid state conformations of cyclo[Gly–Proψ[CH2S]Gly–D –Phe–Pro] and cyclo[Gly–Proψ[CH2–(S)–SO]Gly–D –Phe–Pro] have been characterized by X-ray diffraction analysis. Crystals of the sulfide trihydrate are orthorhombic, P212121, with a = 10.156(3) Å, b = 11.704(3) Å, c = 21.913(4) Å, and Z = 4. Crystals of the sulfoxide are monoclinic, P21, with a = 10.662(1) Å, b = 8.552(3) Å, c = 12.947(2) Å, β = 94.28(2), and Z = 2. Unlike their all-amide parent, which adopts an all-trans backbone conformation and a type II β-turn encompassing Gly-Pro-Gly-D -Phe, both of these peptides contain a cis Gly1-Pro2 bond and form a novel turn structure, i.e., a type II′ β-turn consisting of Gly–D –Phe–Pro–Gly. The turn structure in each of these peptides is stabilized by an intramolecular H bond between the carbonyl oxygen of Gly1 and the amide proton of D -Phe4. In the cyclic sulfoxide, the sulfinyl group is not involved in H bonding despite its strong potential as a hydrogen-bond acceptor. The crystal structure made it possible to establish the absolute configuration of the sulfinyl group in this peptide. The two crystal structures also helped identify a type II′ β-turn in the DMSO-d6 solution conformers of these peptides. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Single crystals were grown from affinity-purified stinging nettle lectin and from its complex with the specific trisaccharide NNN″ -triacetylchitotriose by vapor diffusion at room temperature. The lectin crystallizes in space group P212121 with unit cell dimensions a = 54.3 (1) Å, b = 62.2 (1) Å, and c = 92.4 (2) Å, and diffracts to 3.0 Å resolution. The asymmetric unit contains three lectin monomers. The crystals of the lectin-trisaccharide complex have space group P212121 with cell constants a = 37.69 (4) Å, b = 48.97 (6) Å, and c = 57.32 (4) Å. These crystals diffract to at least 2.0 Å resolution and the asymmetric unit contains one lectin monomer. A three-dimensional X-ray structure determination is on its way. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Pivaloyl-L -Pro-Aib-N-methylamide has been shown to possess one intramolecular hydrogen bond in (CD3)2SO solution, by 1H-nmr methods, suggesting the existence of β-turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II β-turn conformations are about 2 kcal mol?1 more stable than Type III structures. A crystallographic study has established the Type II β-turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 Å, b = 11.421 Å, c = 12.966 Å, β = 97.55°, and Z = 2. The structure has been refined to a final R value of 0.061. The Type II β-turn conformation is stabilized by an intramolecular 4 → 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are ?Pro = ?57.8°, ψPro = 139.3°, ?Aib = 61.4°, and ψAib = 25.1°. The Type II β-turn conformation for Pro-Aib in this peptide is compared with the Type III structures observed for the same segment in larger peptides.  相似文献   

6.
The crystal and molecular structure of N-benzyloxycarbonyl-α-aminoisobutyryl-L -prolyl methylamide, the amino terminal dipeptide fragment of alamethicin, has been determined using direct methods. The compound crystallizes in the orthorhombic system with the space group P212121. Cell dimensions are a = 7.705 Å, b = 11.365 Å, and c = 21.904 Å. The structure has been refined using conventional procedures to a final R factor of 0.054. The molecular structure possesses a 4 → 1 intramolecular N-H—O hydrogen bond formed between the CO group of the urethane moiety and the NH group of the methylamide function. The peptide backbone adopts the type III β-turn conformation, with ?2 = ?51.0°, ψ2 = ?39.7°, ?3 = ?65.0°, ψ3 = ?25.4°. An unusual feature is the occurrence of the proline residue at position 3 of the β-turn. The observed structure supports the view that Aib residues initiate the formation of type III β-turn conformations. The pyrrolidine ring is puckered in Cγ-exo fashion.  相似文献   

7.
Some theoretical studies have predicted that the conformational freedom of the α-aminoisobutyric acid (H-Aib-OH) residue is restricted to the α-helical region of the Ramachandran map. In order to obtain conformational experimental data, two model peptide derivatives, MeCO-Aib-NHMe 1 and ButCO-LPro-Aib-NHMe 2 , have been investigated. The Aib dipeptide 1 crystallizes in the monoclinic system (a = 12.71 Å, b = 10.19 Å, c = 7.29 Å, β = 110.02°, Cc space group) and its crystal structure was elucidated by x-ray diffraction analysis. The azimuthal angles depicting the molecular conformation (? = ?55.5°, ψ = ?39.3°) fall in the α-helical region of the Ramachandran map and molecules are hydrogen-bonded in a three-dimensional network. In CCl4 solution, ir spectroscopy provides evidence for the occurrence of the so-called 5 and C7 conformers stabilized by the intramolecular ii and i + 2 → i hydrogen bonds, respectively. The tripeptide 2 was studied in various solvents [CCl4, CD2Cl2, CDCl3, (CD3)2SO, and D2O] by ir and pmr spectroscopies. It was shown to accommodate predominantly the βII folded state stabilized by the i + 3 → i hydrogen bond. All these experimental findings indicate that the Aib residue displays the same conformational behavior as the other natural chiral amino acid residues.  相似文献   

8.
A delipidized proteolipid protein fraction was purified from organic solvent extracts of bovine cerebral cortex and studied by means of diffraction, electron microscopic, and ir techniques. Special use was made of an electron diffraction procedure which minimized the electron damage to the biological specimens. The ir spectroscopy of the apoprotein fraction indicated the presence of polypeptides in extended β-conformation, possibly in the antiparallel mode of packing. Electron microscopy of the fraction, negatively stained in organic media, made apparent the presence of both ordered and amorphous material. Only the former, characterized by repeating units of about 40–45 Å in diameter and varying length, produced diffraction patterns in the selected area mode exhibiting a highly undistorted lattice. The two-dimensional cell parameters of the protein fraction were a = 4.79 Å, b = 7.20 Å, and γ = 90°. The plane group symmetry, corresponding to the systematic absences, was p 2gg, consistent with the β-pleated sheet structure of simple polypeptides.  相似文献   

9.
Sweet potato β-amylase is a tetramer of identical subunits, which are arranged to exhibit 222 molecular symmetry. Its subunit consists of 498 amino acid residues (Mr 55,880). It has been crystallized at room temperature using polyethylene glycol 1500 as precipitant. The crystals, growing to dimensions of 0.4 mm × 0.4 mm × 1.0 mm within 2 weeks, belong to the tetragonal space group P42212 with unit cell dimensions of a = b = 129.63 Å and c = 68.42 Å. The asymmetric unit contains 1 subunit of β-amylase, with a crystal volume per protein mass (VM) of 2.57 Å3/Da and a solvent content of 52% by volume. The three-dimensional structure of the tetrameric β-amylase from sweet potato has been determined by molecular replacement methods using the monomeric structure of soybean enzyme as the starting model. The refined subunit model contains 3,863 nonhydrogen protein atoms (488 amino acid residues) and 319 water oxygen atoms. The current R-value is 20.3% for data in the resolution range of 8–2.3 Å (with 2 σ cut-off) with good stereochemistry. The subunit structure of sweet potato β-amylase (crystallized in the absence of α-cyclodextrin) is very similar to that of soybean β-amylase (complexed with α-cyclodextrin). The root-mean-square (RMS) difference for 487 equivalent Cα atoms of the two β-amylases is 0.96 Å. Each subunit of sweet potato β-amylase is composed of a large (α/β)8 core domain, a small one made up of three long loops [L3 (residues 91–150), LA (residues 183–258), and L5 (residues 300–327)], and a long C-terminal loop formed by residues 445–493. Conserved Glu 187, believed to play an important role in catalysis, is located at the cleft between the (α/β)8 barrel core and a small domain made up of three long loops (L3, L4, and L5). Conserved Cys 96, important in the inactivation of enzyme activity by sulfhydryl reagents, is located at the entrance of the (α/β)8 barrel. © 1995 Wiley-Liss, Inc.  相似文献   

10.
The crystal structure of an acyclic pentapeptide, Boc-Gly-Gly-Leu-Aib-Val-OMe, reveals an extended conformation for the Gly-Gly segment, in contrast to the helical conformation determined earlier in the octapeptide Boc-Leu-Aib-Val-Gly-Gly-Leu-Aib-Val-OMe [I. L. Karle, A. Banerjee, S. Bhattacharjya, and P. Balaram [1996] Biopolymers, Vol. 38, pp. 515–526). The pentapeptide crystallizes in space group P21 with one molecule in the asymmetric unit. The cell parameters are: a = 10.979(2) Å, b = 9.625(2) Å, c = 14.141(2) Å, and β = 96.93(1)°, R = 6.7% for 2501 reflections (I > 3σ(I)). The Gly-Gly segment is extended (ϕ1 = −92°, ψ1 = −133°, ϕ2 = 140°, ψ2 = 170°), while the Leu-Aib segment adopts a type II β-turn conformation (ϕ3 = −61°, ψ3 = 130°, ϕ4 = 71°, ψ4 = 6°). The observed conformation for the pentapeptide permits rationalization of a structural transition observed for the octapeptide in solution. An analysis of Gly-Gly segments in peptide crystal structures shows a preference for either β-turn or extended conformations. © 1997 John Wiley & Sons, Inc.  相似文献   

11.
We have initiated a project to determine the three-dimensional structure of GMP synthetase (GMPS) from Escherichia coli. GMPS catalyzes the conversion of XMP to GMP in the final step of de novo guanine nucleotide biosynthesis, and is a member of the glutamine amidotransferase family: a group of enzymes responsible for the assimilation of nitrogen into compounds such as amino acids, purine and pyrimidine bases, amino sugars, and antibiotics. The E. coli guaA gene encoding GMPS was cloned into a tac expression vector, overexpressed, and its gene product purified. Conditions for the growth of protein crystals were developed using recombinant GMPS in the presence of MgCl2, ATP, and XMP. The crystals are monoclinic, space group P21, with cell parameters of a = 156.0 Å, b = 102.0 Å, c = 78.8 Å, β= 96.7°. Diffraction data to 2.8 Å spacings were collected on a Xuong-Hamlin area detector with an overall Rsym of 5.2%. Both the volume of the unit cell and the peaks in the self-rotation function are consistent with one GMPS tetramer of D2 symmetry in the crystallographic asymmetric unit. Previously, GMPS has been observed only as a dimer in solution. GMPS was covalently modified with p-chloromercuribenzylsulfonic acid (PCMBS), and its X-ray fluorescence spectrum was measured through the LIII absorption edge of mercury Anomalous scattering factors for cysteinyl mercury were derived from this spectrum, and the feasibility of structure determination by multi-wavelength anomalous diffraction was evaluated. The optimal MAD dispersive signal is 4.5% of |F|, and the optimal MAD Bijvoet signal is 7.5% of |F| at a concentration of approximately 1 mercury per 10-kDa protein. The anomalous scattering factors tabulated here should be transferable to cysteinyl mercury in other proteins. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
An Nα-protected model pentapeptide containing two consecutive ΔPhe residues, Boc-Leu-ΔPhe-ΔPhe-Ala-Phe-NHMe, has been synthesized by solution methods and fully characterized. 1H-nmr studies provided evidence for the occurrence of a significant population of a conformer having three consecutive, intramolecularly H-bonded β-bends in solution. The solid state structure has been determined by x-ray diffraction methods. The crystals grown from aqueous methanol are orthorhombic, space group P212121, a = 11.503(2), b = 16.554(2), c = 22.107(3) Å, V = 4209(1) Å,3 and Z = 4. The x-ray data were collected on a CAD4 diffractometer using CuKa radiation (λ = 1.5418 Å). The structure was determined using direct methods and refined by full-matrix least-squares procedure. The R factor is 5.3%. The molecule is characterized by a right handed 310-helical conformation (〈ϕ〉 = −68.2°, 〈ψ〉 = −26.3°), which is made up of two consecutive type III β-bends and one type I β-bend. In the solid state the helical molecules are aligned head-to-tail, thus forming long rod like structures. A comparison with other peptide structures containing consecutive ΔPhe residues is also provided. The present study confirms that the -ΔPhe-ΔPhe-sequence can be accommodated in helical structures. © 1997 John Wiley & Sons, Inc. Biopoly 42: 373–382, 1997  相似文献   

13.
The three-dimensional structure of native SHL-I, a lectin from the venom of the Chinese bird spider Selenocosmia huwena, has been determined from two-dimensional 1H NMR spectroscopy recorded at 500 and 600 MHz. The best 10 structures have NOE violation <0.3 Å, dihedral violation <2 deg, and average root-mean-square differences of 0.85 + 0.06 Å over backbone atoms. The structure consists of a three-stranded antiparallel β-sheet and three turns. The three disulfide bridges and three-stranded antiparallel β-sheet form a inhibitor cystine knot motif which is adopted by several other small proteins, such as huwentoxin-I, ω-conotoxin, and gurmarin. The C-terminal fragment from Leu28 to Trp32 adopts two sets of conformations corresponding to the cis and trans conformations of Pro31. The structure of SHL-I also has high similarity with that of the N-terminus of hevein, a lectin from rubber-tree latex.  相似文献   

14.
Abstract

Thaumatin is a plant protein that in the mature form contains 8 disulfide bonds and 207 amino acids. Several forms of this protein occur naturally and each elicits an intense sweetness sensation when tasted in microgram quantities. The two major forms of thaumatin are easily separable by ion exchange chromatography. Crystals of the two proteins (designated here A and B) have been grown by vapor equilibration from solutions containing polyethylene glycol and examined by X-ray diffraction. The thaumatin A crystals are of space group P212121 with a=44.3Å, b=63.7Åand c=72.7A. The crystals of thaumatin B are of space group C2 with a = 117.7Å, b=44.9Å, and c=38.0Å and β=94.0°. Both crystals diffract to well beyond 2.3Å and appear suitable for high resolution structure analysis. Four heavy atom derivatives of thaumatin B have been generated and diffraction data to 4Å resolution have been collected. This work is designed to provide a basis for studying the 3-dimensional structure of more than 100 genetically generated thaumatin derivatives, several of which show enhanced stability and improved taste characteristics.  相似文献   

15.
A Structure determination of the naturally occuring marine algal polysaccharide poly-β-D -mannuronic acid is described. The structure consists of 1e → 4e linked D -mannuronic acid chains with the monosaccharide units in the C1 chair conformation. The X-ray fiber diffraction photograph obtained from bundles of fibers prepared from Fucus vesiculosus has been indexed to an orthorhombic unit cell in which a =7.6 Å, b (fiber axis) = 10.4 Å, c = 8.6 Å, the unit cell containing two disaccharide chain segments with space group P212121. A sheet-like structure involving one intra-chain, one intra-sheet, and one inter-sheet hydrogen bond per monosaccharide is proposed. Features of the chain-packing arrangement are compared with mannan.  相似文献   

16.
Trichosanthin (TCS) is one of the single chain ribosome-inactivating proteins (RIPs). The crystals of the orthorhombic form of trichosanthin have been obtained from a citrate buffer (pH 5.4) with KC1 as the precipitant. The crystal belongs to the space group P212121 with a = 38.31, b = 76.22, c = 79.21 Å. The structure was solved by molecular replacement method and refined using the programs XPLOR and PROLSQ to an R-factor of 0.191 for the reflections within the 6–1.88 Å resolution range. The bond length and bond angle in the protein molecule have root-mean-square deviations from ideal value of 0.013 Å and 3.3°, respectively. The refined model includes 247 residues and 197 water molecules. The TCS molecule consists of two structural domains. The large domain contains six α-helices, a six stranded sheet, and an antiparallel β-sheet. The small domain has a largest α-helix, which shows a distinct bend. The possible active site of the molecule located on the cleft between two domains was proposed. In the active site Arg-163 and Glu-160, Glu-189 and Arg-122 form two ion pairs, Glu-189 and Gln-156 are hydrogen bonded to each other. Three water molecules are bonded to the residues in the active site region. The structures of TCS molecule and ricin A-chain (RTA) superimpose quite well, showing that the structures of the two protein molecules are homologous. Comparison of the structures of the TCS molecule in this orthorhombic crystal with that in the monoclinic crystal indicates that there are no essential differences of the structures between the two protein crystals. © 1994 Wiley-Liss, Inc.  相似文献   

17.
To obtain general rules of peptide design using α,β-dehydro-residues, a sequence with two consecutive ΔPhe-residues, Boc-L -Val-ΔPhe–ΔPhe- L -Ala-OCH3, was synthesized by azlactone method in solution phase. The peptide was crystallized from its solution in an acetone/water mixture (70:30) in space group P61 with a=b=14.912(3) Å, c= 25.548(5) Å, V=4912.0(6) Å3. The structure was determined by direct methods and refined by a full matrix least-squares procedure to an R value of 0.079 for 2891 observed [I?3σ(I)] reflections. The backbone torsion angles ?1=?54(1)°, ψ1= 129(1)°, ω1=?177(1)°, ?2 =57(1)°, ψ2=15(1)°, ω2 =?170(1)°, ?3=80(1)°, ψ3 =7(2)°, ω3=?177(1)°, ?4 =?108(1)° and ψT4=?34 (1)° suggest that the peptide adopts a folded conformation with two overlapping β-turns of types II and III′. These turns are stabilized by two intramolecular hydrogen bonds between the CO of the Boc group and the NH of ΔPhe3 and the CO of Val1 and the NH of Ala4. The torsion angles of ΔPhe2 and ΔPhe3 side chains are similar and indicate that the two ΔPhe residues are essentially planar. The folded molecules form head-to- tail intermolecular hydrogen bonds giving rise to continuous helical columns which run parallel to the c-axis. This structure established the formation of two β-turns of types II and III′ respectively for sequences containing two consecutive ΔPhe residues at (i+2) and (i+3) positions with a branched β-carbon residue at one end of the tetrapeptide.  相似文献   

18.
The synthetic antibody model “M41” was rationally designed with a binding site complementary to chicken egg white cystatin as the prescribed antigen. In order to permit comparison between the computer model and an experimental three-dimensional structure of the artificial protein, its X-ray crystallographic analysis was pursued. For this purpose, M41 was expressed as a recombinant Fab fragment in E. coli by medium cell density fermentation employing the tightly regulated tetracycline promoter. The Fab fragment was efficiently purified via a His-6 tail fused to its heavy chain and immobilized metal affinity chromatography. To raise the chances for the productive formation of crystal packing contacts, three versions of the Fab fragment were generated with differing constant domains. One of these, the variant with murine CK and CH 1γ1 domains, was successfully crystallized by microseeding in a sitting drop. The orthorhombic crystals exhibited symmetry of the space group P212121 with unit cell dimensions a = 104.7 Å, b = 113.9 Å, c = 98.8 Å and diffracted X-rays to a nominal resolution of 2.5 Å. © 1995 Wiley-Liss, Inc.  相似文献   

19.
The Fv fragment of a monoclonal antibody, 7E2 (IgG1, κ, murine), which is directed against the integral membrane protein cytochrome c oxidase (EC 1.9.3.1) from Paracoccus denitrificans, was cloned and produced in Escherichia coli. Crystals suitable for highresolution X-ray analysis were obtained by microdialysis under low salt conditions. The crystals belong to the orthorhombic space group P212121 with unit cell dimensions of a = 51.51 Å, b = 56.15 Å, c = 99.86 Å (1 Å = 0.1 nm) and contain one F v fragment per asymmetric unit. Using synchrotron radiation diffraction data were collected up to 1.28 Å resolution. This high resolution is very unusual for a heterodimeric protein. The crystals should open the way for refining not only the atomic positions, but also for obtaining information about internal dynamics. © 1995 Wiley-Liss, Inc.  相似文献   

20.
The complex formed between the Fab fragment of a murine monoclonal anti-hen egg lysozyme antibody F9.13.7 and the het-erologous antigen Guinea-fowl egg lysozyme has been crystallized by the hanging drop technique. The crystals, which diffract X-rays to 3 Å resolution, belong to the monoclinic space group P21, with a = 83.7 Å, b = 195.5 Å, c = 50.2 Å, β = 108.5° and have two molecules of the complex in the asymmetric unit The three-dimensional structure has been determined from a preliminary data set to 4 Å using molecular replacement techniques. The lysozyme–Fab complexes are arranged with their long molecular axes approximately parallel to the crystallo-graphic unique axis. Fab F9.13.7 binds an anti-genie determinant that partially overlaps the epitope recognized by antilysozyme antibody HyHEL10. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号