首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starting from cellulose samples prepared from cotton lintes and differing in lattice type, crystallinity and fibrillar morphology, enzymatic hydrolysis of fibre cellulose has been studied employing complete enzyme systems from Trichoderma, Sporotrichum, Gliocladium and Penicillium as well as isolated endo- and exo-1,4-β-glucanases from Trichoderma reesei and Sporotorichum pulverulentum. The effect of hydrolysis was characterized by content of reducing sugars (RS) and of glucose in the hydrolyzate as well as by DP and X-ray diffraction pattern of the residues. With all the complete enzyme systems investigated about the same order of degradability was found with a series of substrates differing in physical structure. The hydrolysis effect of cellulase from S. pulverulentum proved to be sensitive to the gas atmosphere above the system (N2 or O2), probably due to the interaction of an O2-atmosphere with the activity of the cellubiose-oxydase existent in the system. Isolated endoglucanase from S. pulverulentum and T.reesei still led to a considerable formation of RS and glucose, a corrosion of the fibre surface and a significant descrease in DP. Influence of substrate physical structure was rather small with regard to RS, but still considerable with regard to residue-DP. The effect of isolated exoglucanases depends largely on the chemical structure of the cellobiohydrolase in question, as demonstrated with the two samples “CBH I” and “CBH II” from T. reesei. With CBH I, rather resembling endo-glucanase behaviour, a considerable formation of RS and a significant corrosion of the fibre surface has been observed. On the other hand, only negligibly small amounts of RS were formed by CBH II. Results are discussed with regard to the complex mechanism of cellulase action on fibrous cellulose and with regard to the relevance of different parameters of physical structure of cellulose in connection with enzymatic hydrolysis. A remarkable acceleration of the Cellulose III → Cellulose I lattice transition due to chain fragmentations in the presence of cellulase can be concluded the experiments.  相似文献   

2.
F H Chu  A Lukton 《Biopolymers》1974,13(7):1427-1434
The maximum at 220 nm in the circular dichroism spectrum of native collagen solution changed to a negative value after heat denaturation or collagenase hydrolysis. The enzyme induced rate of CD change at 220 nm was shown to be first order in collagen concentration. The specific rate constant k is actually a combined rate constant kfast and kslow in which the ratio kf/ks is 4.1. The initial rates were linear with respect to enzyme concentration, and the Km was found to be 5.5 × 10?7 M. The rate of ultraviolet hyperchromicity at 220 nm on collagen hydrolysis was determined. The kfast was the same as that obtained by CD. The kf/ks ratio was 4.6. Both methods may be readily used to assay for collagenase activity.  相似文献   

3.
Despite intensive research, the mechanism of the rapid retardation in the rates of cellobiohydrolase (CBH) catalyzed cellulose hydrolysis is still not clear. Interpretation of the hydrolysis data has been complicated by the inability to measure the catalytic constants for CBH‐s acting on cellulose. We developed a method for measuring the observed catalytic constant (kobs) for CBH catalyzed cellulose hydrolysis. It relies on in situ measurement of the concentration of CBH with the active site occupied by the cellulose chain. For that we followed the specific inhibition of the hydrolysis of para‐nitrophenyl‐β‐D ‐lactoside by cellulose. The method was applied to CBH‐s TrCel7A from Trichoderma reesei and PcCel7D from Phanerochaete chrysosporium and their isolated catalytic domains. Bacterial microcrystalline cellulose, Avicel, amorphous cellulose, and lignocellulose were used as substrates. A rapid decrease of kobs in time was observed on all substrates. The kobs values for PcCel7D were about 1.5 times higher than those for TrCel7A. In case of both TrCel7A and PcCel7D, the kobs values for catalytic domains were similar to those for intact enzymes. A model where CBH action is limited by the average length of obstacle‐free way on cellulose chain is proposed. Once formed, productive CBH–cellulose complex proceeds with a constant rate determined by the true catalytic constant. After encountering an obstacle CBH will “get stuck” and the rate of further cellulose hydrolysis will be governed by the dissociation rate constant (koff), which is low for processive CBH‐s. Biotechnol. Bioeng. 2010;106: 871–883. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
Kinetic measurements of a novel copper-dependent amine oxidase, purified from rat liver mitochondria matrix, were carried out using various substrates in a large pH (5.6–10.2) and ionic strength range (5–200 mM), in order to study the docking of substrates to the enzyme and, as a consequence, to verify the physicochemical characteristics of the active site. Relatively small changes of V max values (approx. 2.5-folds) over the substrates tested, suggest that the rate determining step of the catalysis is only slightly affected by amine chemical structure. In contrast, the strong change of K M and k c/K M values (approx. two orders of magnitude) indicates electrostatic control of the docking process, since the changes of K M and k c/K M values appear due to the presence of positively charged groups in the substrate molecules. These results suggest the presence in the enzyme active site of two negatively charged amino acid residues which seem to interact with positively charged groups of the substrate molecules. Analogies and differences with bovine serum amine oxidase are also described.  相似文献   

5.
A cellulase assay was developed for the continuous measurement of colored cellulose oligosaccharides (total carbohydrates) released during enzymatic hydrolysis of dyed crystal-line cellulose. Several cellulosic substrates were uniformly dyed by Remalzol brilliant blue R salt without altering their physical properties. Dyed Avicel (6.5%, w/w) was selected as the most representative substrate for the assay procedure. The assay was performed continuously in a simple, thermally controlled apparatus designed for filtration of the reaction mixture via a 5-μm-pore-size nylon filter to retain the crystalline dyed cellulose while spectrophotometrically monitoring the absorbance at 595 nm of the reaction filtrate. Crude supernatant cellulase of Trichoderma viride QM9414 was used to test the assay procedure. The activity of cellulase on dyed Avicel as measured by ΔA595nm correlated directly with the total carbohydrates formed. The initial reaction rate of cellulase solubilizing activity was readily determined with high sensitivity. The continuous assay has utility for the study of cellulase kinetics and for the comparison of activities from different microorganisms.  相似文献   

6.
A multistep approach was taken to investigate the intrinsic kinetics of the cellulase enzyme complex as observed with hydrolysis of noncrystalline cellulose (NCC). In the first stage, published initial rate mechanistic models were built and critically evaluated for their performance in predicting time-course kinetics, using the data obtained from enzymatic hydrolysis experiments performed on two substrates: NCC and alpha-cellulose. In the second stage, assessment of the effect of reaction intermediates and products on intrinsic kinetics of enzymatic hydrolysis was performed using NCC hydrolysis experiments, isolating external factors such as mass transfer effects, physical properties of substrate, etc. In the final stage, a comprehensive intrinsic kinetics mechanism was proposed. From batch experiments using NCC, the time-course data on cellulose, cello-oligosaccharides (COS), cellobiose, and glucose were taken and used to estimate the parameters in the kinetic model. The model predictions of NCC, COS, cellobiose, and glucose profiles show a good agreement with experimental data generated from hydrolysis of different initial compositions of substrate (NCC supplemented with COS, cellobiose, and glucose). Finally, sensitivity analysis was performed on each model parameter; this analysis provides some insights into the yield of glucose in the enzymatic hydrolysis. The proposed intrinsic kinetic model parametrized for dilute cellulose systems forms a basis for modeling the complex enzymatic kinetics of cellulose hydrolysis in the presence of limiting factors offered by substrate and enzyme characteristics.  相似文献   

7.
Taking into account the phenomenon of non-productive binding of substrate, kinetic parameters of hydrolysis of acetylcholine (ACh) and its 13 derivatives with different structures of ammonium group by cholinesterase (ChE) of human erythrocytes, ChE of horse blood serum, and ChE of optic ganglia of the Pacific squid Todarodes pacificus are determined. A dependence is revealed of values of parameters of their enzymatic hydrolysis and parameters of the non-productive binding on the substrate structure and ChE nature. Effects of salts, LiCl, NaCl, KCl, MgCl2, CaCl2 and BaCl2, on various kinetic parameters, including parameters of the non-productive binding of substrate, of enzymatic hydrolysis of iodides of ACh and N-acetoxyethylene-N-ethylpiperidinium under action of horse blood serum ChE are studied. Addition of the salts to the reaction mixture produced different effects on values of the catalytic center activity (a c) and the Michaelis constant (K M), depending on the cation nature and the substrate structure. At the same time, values of the a c/K M ratio that characterize to a degree the substrate affinity to the enzyme are equal to each other for two substrates differing in structure, regardless of the presence and nature of the studied cations. Parameters of the non-productive binding of N-acetoxyethylene-N-ethylpiperidinium iodide also depended on the salt nature; however, in that case, a question arises as to the correctness of the comparative analysis, when at determinations of the parameters the non-productive binding of ACh is ignored.  相似文献   

8.
C-Terminal truncation mutagenesis was used to explore the functional and structural significance of the C-terminal region of Aeromonas caviae D1 chitinase (AcD1ChiA). Comparative studies between the engineered full-length AcD1ChiA and the truncated mutant (AcD1ChiAK606) included initial rate kinetics, fluorescence and circular dichroism (CD) spectrometric properties, and substrate binding and hydrolysis abilities. The overall catalytic efficiency, k cat/K M, of AcD1ChiAK606 with the 4MU-(GlcNAc)2 and the 4MU-(GlcNAc)3 chitin substrates was 15–26% decreased. When compared with AcD1ChiA, the truncated mutant AcD1ChiAK606 maintained 80% relative substrate-binding ability and about 76% of the hydrolyzing efficiency against the insoluble α-chitin substrate. Both fluorescence and CD spectroscopy indicated that AcD1ChiAK606 retained the same conformation as AcD1ChiA. These results indicated that removal of the C-terminal 259 amino acid residues, including the putative chitin-binding motif and the A region (a motif of unknown function) of AcD1ChiA, did not seriously affect the enzyme structure integrity as well as activity. The present study provided evidences illustrating that the binding and hydrolyzing of insoluble chitin substrates by AcD1ChiA were not absolutely dependent on the putative C-terminal chitin-binding domain and the function-unknown A region.  相似文献   

9.
Beef liver esterase. II. Kinetic properties   总被引:1,自引:0,他引:1  
The kinetic parameters, kcat and KM, in beef liver esterase-catalyzed hydrolysis were determined for about 100 substrates, which can be classified in several groups: (1) In the ethyl ester series of fatty acids KM decreases with elongation of the acid, while kcat has a maximum value with pentanoate. (2) Alkyl acetates are better substrates as the alkyl moiety is longer, whereas esters with branched alkyl groups become worse substrates. (3) Aryl esters are very good substrates. (4) Esters of dicarboxylic acids are good substrates, but only one ester group is cleaved by the enzyme. Fumarate diester is susceptible to esterase hydrolysis, while maleate is not. (5) Esters of hydrophobic amino acids are very good substrates; the enzyme is not stereoselective and both the l and d stereoisomers are readily hydrolyzed. Branching at the β-carbon atom leads to loss of activity, and blocking of the amino group abolishes it. Fluoride ion and dl-malate esters are potent competitive inhibitors of the enzymic reaction. The optimal pH was found to lie between 8 and 8.5. The reaction rate increased between 5 and 40 °C then dropped sharply. The activity decreased at high salt concentration.  相似文献   

10.
The kinetics of hydrolysis of rat tendon type I, bovine nasal septum type II, and human placental type III collagens by class I and class IIClostridium histolyticum collagenases (CHC) have been investigated. To facilitate this study, radioassays developed previously for the hydrolysis of these [3H]acetylated collagens by tissue collagenases have been adapted for use with the CHC. While the CHC are known to make multiple scissions in these collagens, the assays are shown to monitor the initial proteolytic events. The individual kinetic parametersk cat andK M have been determined for the hydrolysis of all three collagens by both class I and class II CHC. The specific activities of these CHC toward fibrillar type I and III collagens have also been measured. In contrast to human tissue collagenases, neither class of CHC exhibits a marked specificity toward any collagen type either in solution or in fibrillar form. The values of the kinetic parametersk cat andK M for the CHC are similar in magnitude to those of the human enzymes acting on their preferred substrates. Thus, the widely held view that the CHC are more potent collagenases is not strictly correct. As with the tissue collagenases, the local collagen structure at the cleavage sites is believed to play an important role in determining the rates of the reactions studied.  相似文献   

11.
Interaction of T4 DNA-(N6-adenine)-methyltransferase was studied with a variety of synthetic oligonucleotide substrates containing the native recognition site GATC or its modified variants. The data obtained in the decisecond and second intervals of the reaction course allowed for the first time the substrate methylation rates to be compared with the parameters of the steady-state reaction. It was established that the substrate reaction proceeds in two stages. Because it is shown that in steady-state conditions T4 MTase forms a dimeric structure, the following sequence of events is assumed. Upon collision of a T4 MTase monomer with an oligonucleotide duplex, an asymmetrical complex forms in which the enzyme randomly oriented relative to one of the strands of the specific recognition site catalyzes a fast transfer of the methyl group from S-adenosylmethionine to the adenosine residue (k 1 = 0.21 s–1). Simultaneously, a second T4 MTase subunit is added to the complex, providing for the continuation of the reaction. In the course of a second stage, which is by an order of magnitude slower (k 2 = 0.023 s–1 for duplex with the native site), the dimeric T4 MTase switches over to the second strand and the methylation of the second residue, target. The rate of the methyl group transfer from donor, S-adenosylmethionine, to DNA is much higher than the overall rate of the T4 MTase-catalyzed steady-state reaction, although this difference is considerably less than that shown for EcoRI MTase. Base substitutions and deletions in the recognition site affect the substrate parameters in different fashions. When the GAT sequence is disrupted, the proportion of the initial productive enzyme–substrate complexes is usually sharply reduced. The flipping of the adenosine residue to be modified in the recognition site upon interaction with the enzyme, revealed by fluorescence titration, supports the existing notions about the involvement of such a DNA deformation in reactions catalyzed by various DNA-MTases.  相似文献   

12.
A simple method for determining the enzymic hydrolysis parameters of lipid-like substrates and trilaurin assembled in monolayers at the water-air interface was suggested. At a surface pressure of 10 mN/m, the initial rates of lipolysis were found to be proportional to the decrease in area of the substrate monolayer caused by the enzymic hydrolysis in a single-compartment Langmuir balance. The kinetic parameters for the hydrolysis of trilaurin and three 1,3-dilaurylpseudoglycerides acetylated in position 2 with an amino acid (phenylalanine, leucine, or valine) catalyzed with lipase fromPseudomonas fluorescens were determined. Unlike models of enzymic hydrolysis that neglect the thickness of the substrate monolayer, our method allows the determination of kinetic parameters in standard dimensions. The values ofk cat for the synthetic pseudoglycerides were found to be significantly higher than that for trilaurin, while the values ofK m(app) were close. This may be due to the presence of positively charged primary amino groups in the molecules of pseudoglycerides.  相似文献   

13.
The use of 6-(N-acetyl-L -phenylalanyl)-aminoluciferin as a novel substrate for α-chymotrypsin has been demonstrated. The kinetic parameters determined are KM = 0.38mmol/L, kcat = 6.5 s?1 and kcat/kM = 17,100 (L/mols). The test principle of the coupled assay is the release of aminoluciferin by enzymatic cleavage of 6-(N-acetyl-L -phenylalanyl)-aminoluciferin. Aminoluciferin is oxidized, with light emission, by firefly luciferase (Photinus pyralis) and can be quantified in a luminometric assay. The detection limit for chymotrypsin was found to be 0.3 ng per assay. 6-(N-acetyl-L -phenylalanyl)-aminoluciferin has been synthesized as an example for a new class of highly sensitive substrates. By modification of the peptide residue these new substrates may be suitable for ultrasensitive detection of different proteinases.  相似文献   

14.
Kinetic enhancement of organophosphate hydrolysis is a long-standing challenge in catalysis. For prophylactic treatment against organophosphate exposure, enzymatic hydrolysis needs to occur at high rates in the presence of low substrate concentrations and enzymatic activity should persist over days and weeks. Here, the conjugation of small DNA scaffolds was used to introduce substrate binding sites with micromolar affinity to VX, paraoxon, and methyl-parathion in close proximity to the enzyme phosphotriesterase (PTE). The result was a decrease in KM and increase in the rate at low substrate concentrations. An optimized system for paraoxon hydrolysis decreased KM by 11-fold, with a corresponding increase in second-order rate constant. The initial rates of VX and methyl-parathion hydrolysis were also increased by 3.1- and 6.7-fold, respectively. The designed scaffolds not only increased the local substrate concentration, but they also resulted in increased stability and PTE-DNA particle size tuning between 25 and ~150 nm. The scaffold engineering approach taken here is focused on altering the local chemical and physical microenvironment around the enzyme and is therefore compatible with active site engineering via combinatorial and computational approaches.  相似文献   

15.
Summary A new, sensitive and continuous assay for -glucosidase is described exploiting the different angles of rotation for the substrate maltose and the product glucose. Kinetic experiments revealed a very pronounced product inhibition of -glucosidase fromSaccharomyces carlsbergensis with a Ki of 4.85·10–3 M for glucose.The KM of maltose was found to be 37.8·10–3 M. Taking these values, an integral kinetic curve for the enzymatic hydrolysis of maltose was calculated, which is shown to fit the experimental data.Symbols used k1 (min–1) pseudo first-order rate constant (for enzymatic cleavage) - k2 (min–1) rate constant (for mutarotation reaction) - I, P (mol/1) inhibitor (product) concentration - ki (mmol/1) inhibitor constant - KM (mmol/l) Michaelis constant - [M] 589 30 (degree/m · l/mol) molecular rotation at 30°C and 589 nm - s (mmol/l) substrate concentration - R (mmol/mg · min) reaction rate - Vmax (mmol/mg · min) maximal rate - U (mol/min) activity unit (here at 30°C and pH=6.8) Indices O initial value - max maximal value  相似文献   

16.
The enzymatic hydrolysis of cellulose and lignocellulosic materials is marked by a rate decrease along the reaction time. Cellobiohydrolase slow dissociation from the substrate and its inhibition by the cellobiose produced are relevant factors associated to the rate decrease. In that sense, addition of β-glucosidases to the enzyme cocktails employed in cellulose enzymatic hydrolysis not only produces glucose as final product but also reduces the cellobiohydrolase inhibition by cellobiose. The digestive β-glucosidase GH1 from the fall armyworm Spodoptera frugiperda, hereafter called Sfβgly, containing the mutation L428V showed an increased kcat for cellobiose hydrolysis. In comparison to assays conducted with the wild-type Sfβgly and cellobiohydrolase TrCel7A, the presence of the mutant L428V increased in 5 fold the initial rate of crystalline cellulose hydrolysis and reduced to one quarter the time needed to TrCel7A produce the maximum glucose yield. As our results show that mutant L428V complement the action of TrCel7A, the introduction of the equivalent replacement in β-glucosidases is a promising strategy to reduce costs in the enzymatic hydrolysis of lignocellulosic materials.  相似文献   

17.
The inhibition of β-glucosidase in Trichoderma reesei C30 cellulase by D -glucose, its isomers, and derivatives was studied using cellobiose and ρ-nitrophenyl-β-glucoside (PNPG) as substrates for determining enzyme activity. The enzymatic hydrolysis of both substrates was inhibited competitively by glucose with approximate Ki values of 0.5mM and 8.7mM for cellobiose and PNPG as substrate, respectively. This inhibition by glucose was maximal at pH 4.8, and no inhibition was observed at pH 6.5 and above. The α anomer of glucose inhibited β-glucosidase to a greater extent than did the β form. Compared with D -glucose, L -glucose, D -glucose-6-phosphate, and D -glucose-1-phosphate inhibited the enzyme to a much lesser extent, unlike D -glucose-L -cysteine which was almost as inhibitory as glucose itself when cellobiose was used as substrate. Fructose (2?100mM) was found to be a poor inhibitor of the enzyme. It is suggested that high rates of cellobiose hydrolysis catalyzed by β-glucosidase may be prolonged by converting the reaction product glucose to fructose using a suitable preparation of glucose isomerase.  相似文献   

18.
The enzymatic conversion of mixtures of multiple substrates was studied quantitatively, based on established methodology used for the enzymatic kinetic resolution of racemic mixtures, involving the use of competitive factors: ratios of specificity constants (kcat/KM) of substrate pairs. The competitive factors of the substrates were defined in relation to a reference substrate. These competitive factors were used to predict the composition of the reaction mixture as a function of the degree of conversion of the reaction. The methodology was evaluated using three different lipases to hydrolyze a model mixture of four fatty acid methyl esters and for the esterification of a mixture of the same fatty acids in free form with ethanol. In most cases, the competitive factors determined from the initial phase of the reactions predicted the product composition during the rest of the reaction very well. The slowest reacting fatty acid was erucic acid (both in free form and as methyl ester), which was thus enriched in the remaining substrate fraction, while the other fatty acids: lauric acid, palmitic acid and oleic acid were converted faster. Simulations of the compositions of reaction mixtures with different values of the competitive factors were carried out to provide an overview of what could be achieved using enzymatic enrichment. Possible applications include reactions involving homologous substrates and mixtures of multiple isomers. The analysis presented provides guidelines that can be useful in the screening and development of enzymes for enzymatic enrichment applications. Biotechnol. Bioeng. 2013; 110: 78–86. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates) were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve efficient hydrolysis. A statistical design approach was first used to define what might constitute the minimum protein loading (cellulases and β-glucosidase) that could be used to achieve efficient saccharification (defined as at least 70% glucan conversion) of the pretreated substrates after 72 hours of hydrolysis. The likely substrate factors that limit cellulose availability/accessibility were assessed, and then compared with the optimized minimum amounts of protein used to obtain effective hydrolysis. The optimized minimum protein loadings to achieve efficient hydrolysis of seven pretreated substrates ranged between 18 and 63 mg protein per gram of glucan. Within the similarly pretreated group of lignocellulosic feedstocks, the agricultural residues (corn stover and corn fiber) required significantly lower protein loadings to achieve efficient hydrolysis than did the pretreated woody biomass (poplar, douglas fir and lodgepole pine). Regardless of the substantial differences in the source, structure and chemical composition of the feedstocks, and the difference in the pretreatment technology used, the protein loading required to achieve efficient hydrolysis of lignocellulosic substrates was strongly dependent on the accessibility of the cellulosic component of each of the substrates. We found that cellulose-rich substrates with highly accessible cellulose, as assessed by the Simons' stain method, required a lower protein loading per gram of glucan to obtain efficient hydrolysis compared with substrates containing less accessible cellulose. These results suggest that the rate-limiting step during hydrolysis is not the catalytic cleavage of the cellulose chains per se, but rather the limited accessibility of the enzymes to the cellulose chains due to the physical structure of the cellulosic substrate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号