首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leishmania: chemotaxic responses of promastigotes and macrophages in vitro   总被引:1,自引:0,他引:1  
Promastigotes of Leishmania move progressively up a concentration gradient of: various sugars, specific sugars attracting individual species of Leishmania; serum albumin and another unidentified constituent of serum; hemoglobin; and a factor generated by promastigotes in NNN medium. The movement of promastigotes up a concentration gradient of serum is optimal at a pH of 6.4 to 6.8 and a temperature of 28 degrees C and above. Cholinergic and adrenergic agents did not affect the attraction of serum for promastigotes, and cyclic nucleotides, inflammatory mediators, and macrophage products were not chemotaxic. It is postulated that the sugar chemotaxins influence the movement of promastigotes from the sand fly midgut to the esophagus, and serum chemotaxins may play a part in the entry of promastigotes into the skin of a mammal from the proboscis. Macrophages, the host cell of the obligate intracellular Leishmania species, were not attracted to any product of promastigotes. When, however, promastigotes interact with serum, complement is activated to form C5a which is chemotaxic for macrophages. Activation of complement by promastigotes is, at least partially, by the alternate pathway. Other chemotaxins resulting from promastigote interaction with serum may also be present. Promastigotes may also produce inhibitors of C5a activity.  相似文献   

2.
Although Leishmania metacyclic promastigotes are generally considered resistant to human complement, studies of in vitro-cultured axenic stationary promastigotes using serum concentrations that approximate physiological plasma conditions indicate complement sensitivity. Natural Leishmania infection is caused by sand fly-inoculated promastigotes, whose complement resistance has not been analyzed systematically. We compared Leishmania susceptibility to human complement in L. infantum promastigotes derived from in vitro cultures and from sand flies. Phlebotomus perniciosus sand flies were fed with axenic promastigotes, L. infantum-infected U-937 cells, or spleen cells from L. infantum-infected hamsters. On selected days post-feeding, flies were dissected and promastigotes isolated; in addition, axenic promastigotes were obtained from culture at equivalent days of growth. In near-physiological serum concentration and temperature conditions, measurement of real-time kinetics of propidium iodide uptake showed that 90% of axenic- and sand fly-derived promastigotes were rapidly killed by complement. We found no substantial differences between promastigotes from axenic culture, those isolated from flies on different post-feeding days, or those generated in flies fed with distinct inocula. The results indicate that Leishmania susceptibility to human complement is independent of promastigote developmental stage in the sand fly mid-gut and in axenic culture.  相似文献   

3.
SYNOPSIS Promastigotes of Leishmania donovani 3S grown in Tobie's modified medium (Tm) at 25 C multiplied at 37 C after short periods of growth at 32 and 35 C. Only inocula from logarithmic phase cultures grew when placed at 32 C. Amastigotes placed at 32, 35, or 37 C became promastigotes but did not multiply upon transfer. The shortest period required for adaptation of 3S promastigotes to 37 C was 44 days (∽66 generations requiring 18 serial transfers). Addition of chick embryo extract to the medium was unnecessary for growth at elevated temperatures. Promastigotes of the Khartoum strain could not be acclimated to temperatures above 35 C. The long-lasting nature of the adaptation was indicated by (a) ability of 37 C-acclimated promastigotes to grow at this temperature after 14 serial transfers (∽100 generations) at 25 C, and (b) immediate growth of promastigotes at 37 C in cultures inoculated with homogenized hamster spleen previously infected with 37 C acclimated cells. The ability of the temperature-adapted promastigotes to grow at 37 C was lost after 30 serial transfers (224 generations) at 25 C. Since sexual reproduction has not been demonstrated in Leishmania, it was impossible to ascertain whether acclimation was a consequence of mutation or represented a dauermodification.  相似文献   

4.
Leishmania species are dimorphic protozoan parasites that live and replicate in the gut of sand flies as promastigotes or in mammalian hosts as amastigotes. Different immune cells, including DCs, and receptors differ in their involvement in phagocytosis of promastigotes and amastigotes and in recognition of different Leishmania species. In the case of L. mexicana, differences in phagocytosis of promastigotes and amastigotes by DCs and participation of C‐type lectin receptors (CLRs) have not been established. In the present study, flow cytometry and confocal microscopy were used to investigate the phagocytosis by monocyte‐derived dendritic cells (moDCs) of L. mexicana promastigotes and amastigotes in the presence or absence of immune serum during various periods of time. Blocking antibodies against mannose receptors and DC‐SIGN were used to explore the participation of these receptors in the phagocytosis of L. mexicana by moDC. The major differences in interactions of L. mexicana promastigotes and amastigotes with moDC were found to occur within the first 3 hr, during which phagocytosis of promastigotes predominated as compared with opsonization of promastigotes and amastigotes. However, after 6 hr of incubation, opsonized promastigotes were preferentially phagocytosed as compared with unopsonized promastigotes and amastigotes and after 24 hr of incubation there were no differences in the phagocytosis of promastigotes and amastigotes. Finally, after 3 hr incubation, DC‐SIGN was involved in the phagocytosis of promastigotes, but not of amastigotes.  相似文献   

5.
The interaction of fresh serum with promastigotes of Leishmania major, L. donovani, L. mexicana mexicana, L. mexicana amazonensis, and L. braziliensis guyanensis results in lysis of all strains tested with either fresh human or guinea pig serum at 37 C for 30 min. Lysis does not occur in the cold and requires divalent cations and complement that is active hemolytically. Serum deficient in the eighth component of complement is not lytic. Lysis of L. major, L. mexicana, and L. braziliensis proceeds fully in human serum containing EGTA/Mg2+ or in guinea pig serum deficient in the fourth complement component. These species consume only small amounts of C4 from human serum and do not require calcium to optimally bind C3. The data indicate that all are activators of the alternative complement pathway and that the classical pathway is not required for the lysis of these organisms. Promastigotes of L. donovani, in contrast, activate the classical pathway. The presence of calcium is required for both optimal C3 binding and parasite lysis, and L. donovani promastigotes consume C4 when incubated in human serum. In high concentrations, human serum agglutinates all tested Leishmania spp. The agglutinating factor does not require divalent cations, is heat stable, and works at 4 C, suggesting that it is an antibody. This "naturally occurring" antibody cross reacts with all Leishmania spp. and agglutinates them. The adsorption of serum with any Leishmania species or with beads that are Protein A coated, removes the agglutinogen. This factor causes a slight enhancement in alternative pathway activation by L. major and mediates the classical activation by L. donovani. In adsorbed serum, L. donovani promastigotes only weakly activate the alternative complement pathway. Increased concentrations of adsorbed serum are therefore necessary for lysis to proceed. The titer can be partially restored by the addition of heat inactivated serum. Using purified components of the classical cascade, we are unable to visualize surface bound C3 on L. donovani promastigotes unless heat inactivated serum is also present. We conclude that all Leishmania spp. promastigotes are susceptible to lysis by normal serum independent of antibody. The presence of small amounts of naturally occurring antibody in human serum enhances the susceptibility of L. donovani promastigotes to lysis by activating the classical complement pathway.  相似文献   

6.
The META cluster of Leishmania amazonensis contains both META1 and META2 genes, which are upregulated in metacyclic promastigotes and encode proteins containing the META domain. Previous studies defined META2 as a 48.0-kDa protein, which is conserved in other Leishmania species and in Trypanosoma brucei. In this work, we demonstrate that META2 protein expression is regulated during the Leishmania life cycle but constitutive in T. brucei. META2 protein is present in the cytoplasm and flagellum of L. amazonensis promastigotes. Leishmania META2-null replacement mutants are more sensitive to oxidative stress and, upon heat shock, assume rounded morphology with shortened flagella. The increased susceptibility of null parasites to heat shock is reversed by extra-chromosomal expression of the META2 gene. Defective Leishmania promastigotes exhibit decreased ability to survive in macrophages. By contrast, META2 expression is decreased by 80% in RNAi-induced T. brucei bloodstream forms with no measurable effect on survival or resistance to heat shock.  相似文献   

7.
The leishmanioses, vector-borne diseases caused by the trypanosomatid protozoan Leishmania, are transmitted to susceptible mammals by infected phlebotomine sand flies that inoculate promastigotes into hemorrhagic pools created in host skin. We assumed that promastigotes are delivered to a blood pool, and analyzed early promastigote interactions (0–5 min) with host components, which lead to parasite endocytosis by blood leukocytes, and to host infection. Promastigotes were incubated with NHS or with heparinized blood in near-physiological conditions, and we used cell radioimmunoassay and flow cytometry to measure the on-rate constants (k+1) of promastigote interactions with natural opsonins and erythrocytes. We obtained quantitative data for parasitized cells to determine the time-course of promastigote binding and internalization by blood leukocytes. In these reactions, promastigotes bind natural opsonins, immune adhere to erythrocytes and activate complement cytolysis, which kills ∼95% of promastigotes by 2 min post-infection. C3-promastigote binding is a key step in opsonization; nascent C3-promastigotes are the substrate for two simultaneous reactions, C3-promastigote immune adherence (IA) to erythrocytes and complement-mediated promastigote killing. The k+1 for IA was 75-fold greater than that for promastigote killing, showing that IA facilitates promastigote endocytosis and circumvents lysis. At 5 min post-infection, when reaction velocity is still linear and promastigote concentration is not limiting, 17.4% of granulocytes and 10.7% of monocytes had bound promastigotes, of which ∼50% and ∼25%, respectively, carried surface-bound (live) or internalized (live and dead) leishmanias. Of other leukocyte types, 8.5% of B cells bound but did not internalize promastigotes, and T cells, NK cells and CD209+ dendritic cells did not bind parasites. These data show that, once in contact with blood, promastigote invasion of human leukocytes is an extremely rapid and efficient reaction, and suggest that the IA reaction constitutes a central strategy for this parasite in subverting host innate immune defenses.  相似文献   

8.
Promastigotes of Leishmania donovani, 3S strain, were cultured from homogenized infected hamster spleen incubated at 25 C in a particle-free modification of Tanabe's (1923) medium, and were subcultured in this medium from 1 to 4 times. Promastigotes were inoculated intracardially to golden hamsters (Mesocricetus auratus). Promastigotes that were subcultured frequently by transfer from log phase of growth retained their infectivity for hamsters, as assayed by numbers of amastigotes in the liver at 16 days post infection. Promastigotes that were subcultured infrequently by transfer from stationary phase declined in infectivity. The extent of the decline was roughly proportional to the length of the incubation periods of the primary culture plus 1st subculture. Promastigotes harvested from log phase of growth were significantly less infective for hamsters than those harvested from stationary phase of growth, in that numbers of amastigotes found in the liver after 16 days were lower, and times to death longer, when log phase organisms were used to infect hamsters. The age of the hamster at the time of inoculation was found to affect the apparent infectivity of promastigotes from a 1st or 2nd subculture. When weanling (age 4 weeks), juvenile (age 8 weeks) and adult (age 24 to 32 weeks) hamsters received the same numbers of promastigotes, the weanlings had the highest numbers of liver amastigotes at 16 days, and shortest times to death, of the 3 groups; juveniles were intermediate between weanlings and adults; and adults had the lowest numbers of parasites and longest times to death of the host. Differences were statistically significant only between weanlings and adults. Responses of weanling and adult hamsters to infection with promastigotes could be rendered indistinguishable if the promastigotes were inoculated on the basis of 105 promastigotes per g of host body weight.  相似文献   

9.
ABSTRACT. The biochemistry and immunology of Leishmania promastigotes has been extensively studied; this is due primarily to the facility with which this stage, in contrast to the amastigotes stage, can be maintained in axenic culture. Several attempts to axenically culture lines of Leishmania amastigotes have been reported in the literature. This paper summarizes methods of adaptation (low pH, elevated temperature and culture medium) and characterization of several axenic lines of Leishmania amastigotes. Based on morphological, biological, immunological and biochemical evidence, these organisms appear to resemble amastigotes from infected macrophages or tissue. The axenically cultured amastigotes appear to be distinct from shocked (heat, serum deprivation, stressed) Leishmania promastigotes in the plethora of proteins synthesized, growth (multiplication) in culture, and developmental regulation observed. These data suggest that Leishmania organisms have a significant developmental response to certain signals (pH, temperature) mimicking their in vivo macrophage milieu. The response to other environmental parameters characteristic of the host-macrophage remain to be determined. These axenically cultured amastigotes should be of interest for further immunological, biochemical and developmental investigations of the disease-maintaining stage of this parasite.  相似文献   

10.
A series of 1-aryl-4-(phthalimidoalkyl) piperazines and 1-aryl-4-(naphthalimidoalkyl) piperazines were retrieved from a proprietary library based on their high structural similarity to haloperidol, an antipsychotic with antiparasitic activity, and assessed as potential antileishmanial scaffolds. Selected compounds were tested for antileishmanial activity against promastigotes of Leishmania major and Leishmania mexicana in dose-response assays. Two of the 1-aryl-4-(naphthalimidoalkyl) piperazines (compounds 10 and 11) were active against promastigotes of both Leishmania species without being toxic to human fibroblasts. Their activity was found to correlate with the length of their alkyl chains. Further analyses showed that compound 11 was also active against intracellular amastigotes of both Leishmania species. In promastigotes of both Leishmania species, compound 11 induced collapse of the mitochondrial electrochemical potential and increased the intracellular Ca2+ concentration. Therefore, it may serve as a promising lead compound for the development of novel antiparasitic drugs.  相似文献   

11.
Promastigotes of Leishmania mexicana mexicana attach to mouse macrophages in vitro in the absence of serum by a wheat germ agglutinin-like ligand on the surface of the promastigote that binds to the N-acetyl glucosamine moiety of a receptor on the surface of the macrophage. The binding is temperature dependent, and the macrophage receptor is trypsin, cytochalasin B, and glutaraldehyde sensitive. The promastigote ligand is proteolytic enzyme and glutaraldehyde insensitive. Uptake follows attachment and is assisted or inhibited as for attachment. Treatment of promastigotes with proteolytic enzymes uncovers a receptor for a serum component that binds strongly to a mouse macrophage receptor in vitro. The strain of mice donating the macrophages had little effect upon attachment and uptake except that A strain mouse macrophages attached fewer promastigotes in 10 min than those of outbred mice, but took up as many promastigotes over 90 min as those of outbred mice. Low responder Biozzi mouse macrophages took up more promastigotes than high responder Biozzi mouse macrophages. Normal unheated human, rabbit, and guinea pig sera lysed promastigotes and so inhibited their attachment to macrophages in vitro. Unheated immune serum showed an enhanced inhibition of attachment. Heated normal serum allowed attachment and uptake, while promastigotes treated with heated immune serum showed enhanced attachment to and uptake by macrophages. Treatment of macrophages in vitro with immune serum enhanced their ability to attach promastigotes and to engulf them. Repeated 90-min exposures of a population of promastigotes to uptake by mouse macrophages in vitro did not deplete the population of any sub-population more likely to be taken by macrophages. The first sub-population to be taken up survived better in macrophages over 24 h than subsequently engulfed sub-populations.  相似文献   

12.
Antiparasitic effect of a lectin isolated from Synadenium carinatum latex (ScLL) was evaluated against Leishmania (Leishmania) amazonensis promastigotes/amastigotes. Pretreatment of murine inflammatory peritoneal macrophages with ScLL reduced by 65.5% the association index of macrophages and L. (L) amazonensis promastigotes. Expression of cytokines (IL-12, IL-1 and TNF-α) was detected in infected macrophages pretreated with ScLL (10 μg/mL). ScLL also reduced the growth of L. (L) amazonensis amastigote intracellular forms, showing no in vitro cytotoxic effects in mammalian host cells. ScLL treatment in infected murine inflammatory peritoneal macrophages did not induce nitric oxide production, suggesting that a nitric oxide independent pathway is activated to decrease the number of intracellular Leishmania.  相似文献   

13.
Leishmaniasis is a neglected disease produced by the intracellular protozoan parasite Leishmania. In the present study, we show that LABCG2, a new ATP-binding cassette half-transporter (ABCG subfamily) from Leishmania, is involved in parasite virulence. Down-regulation of LABCG2 function upon expression of an inactive mutant version of this half-transporter (LABCG2K/M) is shown to reduce the translocation of short-chain analogues of phosphatidylserine (PS). This dominant-negative phenotype is specific for the headgroup of the phospholipid, as the movement of phospholipid analogues of phosphatidylcholine, phosphatidylethanolamine or sphingomyelin is not affected. In addition, promastigotes expressing LABCG2K/M expose less endogenous PS in the stationary phase than control parasites. Transient exposure of PS at the outer leaflet of the plasma membrane is known to be one of the mechanisms used by Leishmania to infect macrophages and to silence their immune response. Stationary phase/metacyclic promastigotes expressing LABCG2K/M are less infective for macrophages and show decreased pathogenesis in a mouse model of cutaneous leishmaniasis. Thus, mice infected with parasites expressing LABCG2K/M did not develop any lesion and showed significantly lower inflammation and parasite burden than mice infected with control parasites. Our results indicate that LABCG2 function is required for the externalization of PS in Leishmania promastigotes, a process that is involved in the virulence of the parasite.  相似文献   

14.
cAMP‐mediated responses act as modulators of environmental sensing and cellular differentiation of many kinetoplastidae parasites including Leishmania. Although cAMP synthesizing (adenylate cyclase) and degrading (phosphodiesterase) enzymes have been cloned and characterized from Leishmania, no cAMP‐binding effector molecule has yet been identified from this parasite. In this study, a regulatory subunit of cAMP‐dependent protein kinase (Ldpkar1), homologous to mammalian class I cAMP‐dependent protein kinase regulatory subunit, has been identified from L. donovani. Further characterization suggested possible interaction of LdPKAR1 with PKA catalytic subunits and inhibition of PKA activity. This PKA regulatory subunit is expressed in all life cycle stages and its expression attained maximum level in stationary phase promastigotes, which are biochemically similar to the infective metacyclic promastigotes. Starvation condition, the trigger for metacyclogenesis in the parasite, elevates LdPKAR1 expression and under starvation condition promastigotes overexpressing Ldpkar1 attained metacyclic features earlier than normal cells. Furthermore, Ldpkar1 overexpression accelerates autophagy, a starvation‐induced cytological event necessary for metacyclogenesis and amastigote formation. Conditional silencing of Ldpkar1 delays the induction of autophagy in the parasite. The study, for the first time, reports the identification of a functional cAMP‐binding effector molecule from Leishmania that may modulate important cytological events affecting metacyclogenesis.  相似文献   

15.
Given the paucity and toxicity of available drugs for leishmaniasis, coupled with the advent of drug resistance, the discovery of new therapies for this neglected tropical disease is recognised as being of the utmost urgency. As such antimicrobial peptides (AMPs) have been proposed as promising compounds against the causative Leishmania species, insect vector‐borne protozoan parasites. Here the AMP temporins A, B and 1Sa have been synthesised and screened for activity against Leishmania mexicana insect stage promastigotes and mammalian stage amastigotes, a significant cause of human cutaneous disease. In contrast to previous studies with other species the activity of these AMPs against L. mexicana amastigotes was low. This suggests that amastigotes from different Leishmania species display varying susceptibility to peptides from the temporin family, perhaps indicating differences in their surface structure, the proposed target of these AMPs. In contrast, insect stage L. mexicana promastigotes were sensitive to two of the screened temporins which clearly demonstrates the importance of screening AMPs against both forms of the parasite. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
This article describes a sensitive, cheap, and easy method for assaying chemotaxic responses of Leishmania promastigotes. A gradient of the substance to be assayed was produced inside a series of commercially available capillary tubes submerged in a promastigote suspension. After an incubation period, the attractiveness of the substance under test was measured by counting the number of parasites in the capillaries in a Neubauer chamber. Different responses were detected in two strains of Leishmania amazonensis and one strain of L. chagasi after standardization of the method to assay attraction to carbohydrates. Very different responses were obtained when the test was performed using promastigotes of the same strain in two different physiological states (log and stationary phase). The stationary phase cells showed an enhanced chemotaxic capability, which can be explained by the fact that the metacyclic forms commonest in stationary phase cultures have greater mobility than other promastigotes. This method will permit studies to be made of the attractive response to different substances in Leishmania species and other trypanosomatids and facilitate characterization of the potential receptors involved in the chemotaxic response. An adaptation of the method to assay the response to repellent substances is also provided.  相似文献   

17.
Leishmania tropica promastigotes grew slowly but could be maintained for long periods in serum-free hemin-containing media formulated previously for other Leishmania species or in slightly simplified versions of these media. Replacement of hemin in the medium by hemoglobin resulted in a much longer log phase and a significant reduction in the doubling time. Cell counts in cultures started at 1 times 105 cells/ml increased 400-fold in less than 140 h in the hemoglobin-containing media. These media also proved suitable for growing L. donovani and L. enriettii promastigotes.  相似文献   

18.

Background

Lutzomyia longipalpis is the vector of Leishmania infantum in the New World, and its saliva inhibits classical and alternative human complement system pathways. This inhibition is important in protecting the insect´s midgut from damage by the complement. L. longipalpis is a promiscuous blood feeder and must be protected against its host’s complement. The objective of this study was to investigate the action of salivary complement inhibitors on the sera of different host species, such as dogs, guinea pigs, rats and chickens, at a pH of 7.4 (normal blood pH) and 8.15 (the midgut pH immediately after a blood meal). We also investigated the role of the chicken complement system in Leishmania clearance in the presence and absence of vector saliva.

Results

The saliva was capable of inhibiting classical pathways in dogs, guinea pigs and rats at both pHs. The alternative pathway was not inhibited except in dogs at a pH of 8.15. The chicken classical pathway was inhibited only by high concentrations of saliva and it was better inhibited by the midgut contents of sand flies. Neither the saliva nor the midgut contents had any effect on the avian alternative pathway. Fowl sera killed L. infantum promastigotes, even at a low concentration (2%), and the addition of L. longipalpis saliva did not protect the parasites. The high body temperature of chickens (40°C) had no effect on Leishmania viability during our assays.

Conclusion

Salivary inhibitors act in a species-specific manner. It is important to determine their effects in the natural hosts of Leishmania infantum because they act on canid and rodent complements but not on chickens (which do not harbour the parasite). Moreover, we concluded that the avian complement system is the probable mechanism through which chickens eliminate Leishmania and that their high body temperature does not influence this parasite.  相似文献   

19.
Taxic responses may play a role in development of Leishmania in their phlebotomine sand fly vectors. They are possibly responsible for movement of the parasites towards the anterior regions of the gut, from where they would be transmitted to the vertebrate host. A methodology capable to distinguish chemotaxic from osmotaxic responses was described and used to characterise taxic responses in Leishmania promastigotes. These were able to respond to chemotaxic as well as to osmotaxic stimuli. Like bacteria, promastigotes were capable to undergo "adaptation," a phenomenon by which they stop responding to a continuos stimulus. A model capable to explain how a relatively small number of different receptors works to perceive gradients in chemotaxic responses was proposed. According to this model, these receptors possess low specificity and a wide range of affinities varying from high to low. A low specificity makes the same receptor able to bind to a large number of different but structurally related molecules and; a wide range of affinities (considering a population of receptors), implies that the number of receptors "occupied" by attractant molecules along a gradient would go growing step by step.  相似文献   

20.
The present study analyses complement resistance, cell surface carbohydrates expression, lipidic composition and morphology in vivo and in vitro, of Leishmania (Viannia) shawi, a parasite identified in the Amazon region, Pará state, in 1989. We demonstrated that promastigotes in the stationary (STAT) growth phase are more resistant to complement lysis than in the logarithimic (LOG) growth phase. Ultrastructural analyses and imidazol technique showed accumulation of lipids in STAT growth phase promastigotes, which was confirmed by biochemical approach. Light and electron microscopy of skin lesion in hamster footpads caused by promastigotes in STAT growth phase, 90 days post inoculation, showed amastigotes inside of macrophage and free in the tissue surrounded by collagen fibers as well as extensive inflammatory reaction with tissue destruction. We also demonstrated, using lectins by agglutination assays and flow cytometry, the presence of fucose, mannose and/or glucose carbohydrate residues on the surface of LOG and STAT promastigotes. The results constitute the first characterization essay combining biochemical and morphological approaches dedicated to LOG and STAT growth phase promastigotes of L. (V) shawi contributing for a better knowledge of this poorly studied species of the New World.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号