首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT. Naegleria fowleri amebae, but not those of N. australiensis, N. gruberi, or N. lovaniensis, demonstrated enhanced motility when placed in proximity to mammalian cells. Amebae of nonpathogenic species of Naegleria, however, were more motile in cell culture medium than the amebae of N. fowleri. The locomotory response of highly pathogenic mouse-passaged N. fowleri amebae to nerve cells was greater than axenically cultured amebae. The enhanced mobility elicited by whole nerve cells or disrupted nerve cells was not directed migration but chemokinetic. Naegleria fowleri responded to disrupted neuroblastoma cells more vigorously than to disrupted African green monkey kidney (Vero) cells.  相似文献   

2.
ABSTRACT. The purpose of this research was to determine whether mice could be protected from lethal challenge with Naegleria fowleri by prior intranasal exposure to pathogenic and nonpathogenic Naegleria. Mortality ranged from 0 to 100% for mice inoculated intranasally (i.n.) with 5 × 103 amebae of 13 human isolates of N. fowleri. Mice were immunized and challenged i.n. using live amebae of strains of low, medium, and high virulence. The greatest protection against lethal challenge was afforded by three immunizing doses of 103 amebae per dose of the strain of medium virulence. Nonpathogenic N. gruberi also was used to immunize mice i.n. against lethal challenge with N. fowleri. Protection was greater following immunization with N. gruberi than it was after immunization with N. fowleri, suggesting that nonpathogenic N. gruberi may be a better immunogen in protecting mice against lethal naeglerial challenge.  相似文献   

3.
ABSTRACT Using restriction enzyme analysis, mitochondrial DNA fragment patterns from seven strains of pathogenic and nonpathogenic Naegleria and one strain of Vahlkampfia were compared to estimate nucleotide sequence divergence. Significantly high levels of estimated genetic variation between strains of N. gruberi, N. fowleri, and N. jadini support the current taxonomic level of the individual Naegleria species and suggest a distinct phylogeny for each group. Naegleria lovaniensis, strain TS, was shown to have significant nucleotide sequence homology with N. gruberi, strain EGs, suggesting that the two groups share a close taxonomic relationship. The pathogenic strain MB-41 of N. fowleri exhibited distinct genetic divergence from the highly homologous, pathogenic strain Nf66 and the drug-cured strain 6088. Morphologically distinct strains EGs and 1518/la of N. gruberi exhibited significantly large sequence divergence consistent with a more distant taxonomic relationship. Amoebae from the genus Vahlkampfia expressed genetic similarity with strains of N. gruberi.  相似文献   

4.
A study of amebas of the genera Naegleria, Acanthamoeba, Polysphondylium, and Didymium shows that a cytopathogenic agent that is filterable and passageable is present only in the strains of the Naegleria whether they are obtained free-living from soil samples (N. gruberi) or as pathogens from humans (N. fowleri). The agents obtained from the different Naegleria strains are similar in amount and in their cytopathogenic interaction with chick cultures. The agent has characteristics that distinguish it from the known viruses.  相似文献   

5.
Naegleria fowleri is a unicellular eukaryote causing primary amoebic meningoencephalitis, a neuropathic disease killing 99% of those infected, usually within 7–14 days. Naegleria fowleri is found globally in regions including the US and Australia. The genome of the related nonpathogenic species Naegleria gruberi has been sequenced, but the genetic basis for N. fowleri pathogenicity is unclear. To generate such insight, we sequenced and assembled the mitochondrial genome and a 60‐kb segment of nuclear genome from N. fowleri. The mitochondrial genome is highly similar to its counterpart in N. gruberi in gene complement and organization, while distinct lack of synteny is observed for the nuclear segments. Even in this short (60‐kb) segment, we identified examples of potential factors for pathogenesis, including ten novel N. fowleri‐specific genes. We also identified a homolog of cathepsin B; proteases proposed to be involved in the pathogenesis of diverse eukaryotic pathogens, including N. fowleri. Finally, we demonstrate a likely case of horizontal gene transfer between N. fowleri and two unrelated amoebae, one of which causes granulomatous amoebic encephalitis. This initial look into the N. fowleri nuclear genome has revealed several examples of potential pathogenesis factors, improving our understanding of a neglected pathogen of increasing global importance.  相似文献   

6.
The cytopathogenicity of Naegleria fowleri strain LEE (ATCC-30894) for cultured rat neuroblastoma cells (B-103) has been investigated. Both live N. fowleri amoebae and Naegleria lysates added to 51Cr-labeled B-103 cells caused release of radiolabel, which was dependent upon the ratio of amoebae to target cells or to the lysate concentration. Lysates of N. fowleri strains LEE, NF-66, NF-69, and HB-4 were equally injurious to B-103 target cells whereas lysates of strains 6088 and KUL were less cytotoxic. Highly pathogenic mouse-passaged strain LEE were less cytotoxic than axenically grown amoebae. Maximum cytotoxicity was observed in lysates from amoebae in late exponential or early stationary phase of growth. Cytopathogenicity of lysates was reduced after heating at 44°C for 60 min or at 60°C for 30 min. Cytotoxicity was stable during storage at 4°C or at ?20°C for 26 h. Neither live amoebae nor lysates injured B-103 target cells at 4°C. Live amoebae and lysates injured B-103 by a time, temperature, and concentration dependent process.  相似文献   

7.
SYNOPSIS. Ultrastructure of cysts of Naegleria gruberi, Naegleria fowleri, and Naegleria jadini was compared by transmission electron microscopy. Pores in the cyst wall were observed in all 3 species. In N. gruberi they were surrounded by a collar and sealed with a relatively large mucoid plug; no such collar was seen around the pores in the other 2 species, in which the plug was smaller than that in N. gruberi. An electron-dense plaque serving as an additional pore closure was present in all 3 species. In N. gruberi, the cyst wall consisted of an inner thick and an outer thin layer; however, only the inner component was present in cysts of N. fowleri and N. jadini, which had a smooth appearance. At the ultrastructural level, excystment of N. fowleri involved digestion of the mucoid plug and emergence of the trophozoite through the pore. Some digestion of the cyst wall also appeared to take place during excystment.  相似文献   

8.
Chemically defined minimal media for the cultivation of high temperature tolerant and pathogenic Naegleria spp. have been developed. A defined minimal medium, identical for N. fowleri and N. lovaniensis, consists of eleven amino acids (arginine, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, threonine, tryptophan, and valine), six vitamins (biotin, folic acid, hemin, pyridoxal, riboflavin, and thiamine), guanosine, glucose, salts, and metals. Three of the four strains of Naegleria fowleri tested (ATCCr?30100, ATCCr?30863, and ATCCr?30896) and two strains of N. lovaniensis (ATCCr?30467 and ATCCr?30569) could be cultured beyond ten subcultures on this medium. For N. fowleri ATCCr?30894 diaminopimelic acid, or lysine, or glutamic acid was also required. Mean generation time was reduced and population density increased for all strains with the introduction of glutamic acid. Glucose could be eliminated from the minimal medium only if glutamic acid was present. Without glucose, mean generation time increased and population density decreased. Diaminopimelic acid could substitute for lysine for ATCCr?30894, indicating that Naegleria species may synthesize their lysine via the DAP pathway. Naegleria fowleri ATCCr?30100 could be adapted to grow without serine or glycine in the minimal medium with glutamic acid added, but with mean generation time increased and population density decreased. The strain could be grown in the minimal medium in the absence of metals. For growth of N. australiensis ATCCr?30958, modification of the medium by increasing metals ten-fold, substituting guanine for guanosine and adding lysine, glutamic acid, and six vitamins (p-aminobenzoic acid, choline chloride, inositol, vitamin B12, nicotinamide, and Ca pantothenate) was required.  相似文献   

9.
The completion of the genome project for Naegleria gruberi provides a unique insight into the metabolic capacities of an organism, for which there is an almost complete lack of experimental data. The metabolism of Naegleria seems to be extremely versatile, as can be expected for a free-living amoeboflagellate, but although considered to be fully aerobic, its genome also predicts important anaerobic traits. Other predictions are that carbohydrates are oxidised to carbon dioxide and water when oxygen is not limiting and that in the absence of oxygen the end-products will be succinate, acetate and minor quantities of ethanol and d-lactate. The hybrid mitochondrion/hydrogenosome has both cytochromes and an [Fe] hydrogenase, but seems to lack pyruvate-ferredoxin oxidoreductase. Genomic information also provides the possibility to identify drugs with a possible mode of action in the fatal primary amoebic meningoencephalitis caused by the closely related opportunistic pathogen Naegleria fowleri.  相似文献   

10.
Scanning electron microscopy of pathogenic and non-pathogenic Naegleria cysts. International journal for Parasitology4: 139–142. Cysts of 4 strains of non-pathogenic Naegleria gruberi and 5 strains of pathogenic Naegleria fowleri were examined in the scanning electron microscope. Excystment of the Naegleria gruberi amoebae occurred via preformed exit pores in the cyst wall. Similar structures were not found in the cysts of Naegleria fowleri, and excystment occurred by rupture of the cyst wall. The sequence of cyst wall rupture is illustrated for one of the pathogenic strains.  相似文献   

11.
Emerging methods based on mass spectrometry (MS) can be used in the rapid identification of microorganisms. Thus far, these practical and rapidly evolving methods have mainly been applied to characterize prokaryotes. We applied matrix‐assisted laser‐desorption‐ionization‐time‐of‐flight mass spectrometry MALDI‐TOF MS in the analysis of whole cells of 18 N. fowleri isolates belonging to three genotypes. Fourteen originated from the cerebrospinal fluid or brain tissue of primary amoebic meningoencephalitis patients and four originated from water samples of hot springs, rivers, lakes or municipal water supplies. Whole Naegleria trophozoites grown in axenic cultures were washed and mixed with MALDI matrix. Mass spectra were acquired with a 4700 TOF‐TOF instrument. MALDI‐TOF MS yielded consistent patterns for all isolates examined. Using a combination of novel data processing methods for visual peak comparison, statistical analysis and proteomics database searching we were able to detect several biomarkers that can differentiate all species and isolates studied, along with common biomarkers for all N. fowleri isolates. Naegleria fowleri could be easily separated from other species within the genus Naegleria. A number of peaks detected were tentatively identified. MALDI‐TOF MS fingerprinting is a rapid, reproducible, high‐throughput alternative method for identifying Naegleria isolates. This method has potential for studying eukaryotic agents.  相似文献   

12.
ABSTRACT. Actin, the major protein of amebae of Naegleria gruberi, proved to be strongly immunogenic in rabbits. The resulting precipitating antibodies are specific to actin of Naegleria. In a competitive solid-phase radioimmunoassay, these antibodies bound similarly to Naegleria G- and F-actin. Actins from amebae of Acanthamoeba and Dictyostelium, plasmodia of Physarum, sea urchin eggs, and vertebrate muscles gave no competition in the radioimmunoassay. Estimates of the amount of actin in Naegleria amebae ranged from a minimum of 5% of the total cell protein by radioimmunoassay to a maximum of 16% by electrophoresis. The unusual species specificity of these antibodies indicates that Naegleria actin, although conserved in many properties, is different enough to have unique antigenic determinants.  相似文献   

13.
A multiplex PCR was developed to simultaneously detect Naegleria fowleri and other Naegleria species in the environment. Multiplex PCR was also capable of identifying N. fowleri isolates with internal transcribed spacers of different sizes. In addition, restriction fragment length polymorphism analysis of the PCR product distinguished the main thermophilic Naegleria species from the sampling sites.  相似文献   

14.
The phagocytic activities of N. lovaniensis (Aq/9/1/45D) and N. gruberi (1518/1f and 1518/1e) were studied in the presence of erythrocytes of various species: chicken, rabbit, goat, and human (A+, B+, and AB+ were tested). The percentage of amoebae with ingested red cells, the phagocytic index (PhI), can be considered as an expression of phagocytic activity. Under given conditions (erythrocyte concentration, incubation time, age of amoebic cultures) each strain of Naegleria prefers one erythrocyte type. Thus, for 72-h cultures, N. lovaniensis ingested more A+ type erythrocytes than did N. gruberi strains but had very low affinity for rabbit red cells except when very high concentrations were tested. Naegleria gruberi 1f was the most active of the three strains towards rabbit and B+ and AB+ human erythrocytes, but very low PhIs were obtained with goat erythrocytes. Naegleria gruberi le exhibited high phagocytic activity for every erythrocyte type except for rabbit red cells.  相似文献   

15.
ABSTRACT. The cytotoxic activity of a cell-free extract of Naegleria fowleri amebae on B103 rat nerve cells in culture was investigated. The cell-free extract was prepared by subjecting lysed amebae to centrifugation at 100,000 g for 1 h, precipitation of the supernatant fluid with 30–60% saturated ammonium sulfate, and desalting by group exclusion chromatography utilizing Sephadex G-25. The supernatant fluid recovered from this procedure was termed the soluble fraction. The Naegleria cytotoxic activity present in the soluble fraction was assayed by 51Cr released from labeled B103 cells. The Naegleria soluble fraction, when added to nerve cells, elicited blebs on the B103 target cell surface within 5 min after exposure to the fraction. Later, holes were observed in the B103 cell plasma membrane. These alterations were never observed on untreated B103 cells. Phospholipase A, phospholipase C, and protease activities were associated with the desalted ammonium sulfate-precipitable cytotoxic activity of N. fowleri cell-free lysate. The cytotoxic activity was impaired by ethylenediamine-tetraacetate (EDTA), phospholipase A inhibitor (Rosenthal's reagent), heating at 50°C for 15 min, or incubation at pH 10 for 60 min. Repeated freeze-thawing and inhibitors of proteolytic enzymes had no effect on the cytotoxic activity. Small amounts of ethanol (5% v/v) enhanced cytotoxic activity of the fraction. Phospholipases A and C, as well as other as yet unidentified cytolytic factors may be responsible for producing 51Cr release from target cells by the soluble fraction of N. fowleri extracts.  相似文献   

16.
Naegleria fowleri the causative agent of Primary Amoebic Meningoencephalitis, is ubiquitously distributed worldwide in various warm aquatic environments and soil habitats. The present study reports on the presence of Naegleria spp. in various water bodies present in Rohtak and Jhajjar district, of state Haryana, India. A total of 107 water reservoirs were screened from summer till autumn (2012 and 2013). In order to isolate Naegleria spp. from the collected water samples, the water samples were filtered and the trapped debris after processing were transferred to non-nutrient agar plates already seeded with lawn culture of Escherichia coli. Out of total 107 water samples, 43 (40%) samples were positive by culture for free living amoeba after incubation for 14 days at 37°C. To identify the isolates, the ITS1, 5.8SrDNA and ITS2 regions were targeted for PCR assay. Out of total 43 positive samples, 37 isolates were positive for Naegleria spp. using genus specific primers and the most frequently isolated species was Naegleria australiensis. Out of 37 Naegleria spp. positive isolates, 1 isolate was positive for Naegleria fowleri. The sequence analysis revealed that the Naegleria fowleri strain belonged to Type 2.  相似文献   

17.
SYNOPSIS. Isoenzyme electrophoresis of 7 different enzyme systems was used to compare 24 strains of Naegleria fowleri and 6 strains of N. gruberi. The 30 strains could be grouped into 4 distinct categories based upon zymogram patterns. No interstrain band variation in all enzyme systems was demonstrated in pathogenic strains of N. fowleri. Three nonpathogenic high temperature-tolerant strains of Naegleria had similar zymograms. Four of the 5 remaining nonpathogenic Naegleria strains had no interstrain band variation. Based upon zymograms, the 22 pathogenic strains constitute a homogenous species. Similarly the high temperature-tolerant nonpathogenic strains formed a cohesive group. The remaining nonpathogenic strains could be separated into 2 groups.  相似文献   

18.
The present study is an attempt to investigate the presence of Naegleria fowleri in Indian population. A total of 307 patients were enrolled and water samples were collected from both residential and surrounding areas of patients found positive for N. fowleri. The different species of Naegleria from both clinical and water samples were identified taxonomically. Recommended microbiological conventional techniques were used to identify different Naegleria stages and other free-living amoebae from the samples. PCR assays, using both genus and species specific primers were also optimized. None of the samples were positive by conventional microbiological examinations. However, PCR assays detected only three samples positive for N. fowleri. A total of 10 water bodies (ponds), that were used by Naegleria positive patients were examined. The pH and temperature of the water samples collected from water bodies ranged between 5.6–7.2 and 25–32 °C respectively. Among all the 10 water samples tested, four samples were positive for genus Naegleria by PCR assay, of which only two samples, showed positive amplification for N. fowleri. The sequence analysis of N. fowleri strain belonged to genotype II.  相似文献   

19.
The free-living amoeboflagellate genus Naegleria includes one pathogenic and two potentially pathogenic species (Naegleria fowleri, Naegleria italica, and Naegleria australiensis) plus numerous benign organisms. Monitoring of bathing water, water supplies, and cooling systems for these pathogens requires a timely and reliable method for identification, but current DNA sequence-based methods identify only N. fowleri or require full sequencing to identify other species in the genus. A novel closed-tube method for distinguishing thermophilic Naegleria species is presented, using a single primer set and the DNA intercalating dye SYTO9 for real-time PCR and melting-curve analysis of the 5.8S ribosomal DNA gene and flanking noncoding spacers (ITS1, ITS2). Collection of DNA melting data at close temperature intervals produces highly informative melting curves with one or more recognizable melting peaks, readily distinguished for seven Naegleria species and the related Willaertia magna. Advantages over other methods used to identify these organisms include its comprehensiveness (encompassing all species tested to date), simplicity (no electrophoresis required to verify the product), and sensitivity (unambiguous identification from DNA equivalent to one cell). This approach should be applicable to a wide range of microorganisms of medical importance.  相似文献   

20.
Naegleria fowleri, a free‐living ameba, is the causative agent of Primary Amebic Meningoencephalitis. Highly pathogenic mouse‐passaged amebae (Mp) and weakly pathogenic axenically grown (Ax) N. fowleri were examined for peptidase activity. Zymography and azocasein peptidase activity assays demonstrated that Mp and Ax N. fowleri exhibited a similar peptidase pattern. Prominent for whole cell lysates, membranes and conditioned medium (CM) from Mp and Ax amebae was the presence of an activity band of approximately 58 kDa that was sensitive to E64, a cysteine peptidase inhibitor. However, axenically grown N. fowleri demonstrated a high level of this peptidase activity in membrane preparations. The inhibitor E64 also reduced peptidase activity in ameba‐CM consistent with the presence of secreted cysteine peptidases. Exposure of Mp amebae to E64 reduced their migration through matrigel that was used as an extracellular matrix, suggesting a role for cysteine peptidases in invasion of the central nervous system (CNS). The collective results suggest that the profile of peptidases is not a discriminative marker for distinguishing Mp from Ax N. fowleri. However, the presence of a prominent level of activity for cysteine peptidases in N. fowleri membranes and CM, suggests that these enzymes may serve to facilitate passage of the amebae into the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号