首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Radiofrequency lesions were made in the lateral geniculate nuclei of six squirrel monkeys. The resulting degenerating terminals and their postsynaptic structures in layer IV of area 17 were quantitatively categorized on photomontages covering large areas of neuropil. Two to five days after the lesion, numerous axon terminals were affected by a variety of degenerative changes, i.e., enlargement and distortion of synaptic vesicles, neurofilamentous hyperplasia, electron-lucent and electron-dense reactions. Based on the aggregation of electron-dense material beneath the postsynaptic membrane, the degenerating terminals were considered to be of the asymmetric type. Among the degenerating boutons were the largest axon endings that occur in layer IV. Three days postoperatively, degenerating boutons contributed an average of 16.2% to the total synapse population; five days postoperatively, the average had increased to 19.3 %. The percentage of degenerating boutons on individual montages, however, amounted to as much as 29%. This amount probably reflects more closely the actual contribution of the geniculocortical fiber system to layer IV of striate cortex. The postsynaptic structure most frequently contacted by degenerating axon endings was the dendritic spine, followed by dendrites of small diameter. To account for the diversity of degenerative changes in the same fiber system, we offer the tentative suggestion that heterogeneously degenerating axon terminals arise from a heterogeneous population of neurons in the lateral geniculate nucleus, i.e., from magnocellular versus parvocellular laminae.  相似文献   

2.
The present study describes the structural changes in the gracile nucleus of the spontaneously diabetic BB rat. At 3-7 days post-diabetes, axons, axon terminals and dendrites showed electron-dense degeneration. Degenerating axons were characterized by swollen mitochondria, vacuolation, accumulation of glycogen granules, tubulovesicular elements, neurofilaments and dense lamellar bodies. Degenerating axon terminals consisted of an electron-dense cytoplasm containing swollen mitochondria, vacuoles and clustering of synaptic vesicles. These axon terminals made synaptic contacts with cell somata, dendrites and other axon terminals. Degenerating dendrites were postsynaptic to normal as well as degenerating axon terminals. At 1-3 months post-diabetes, degenerating electron-dense axons, axon terminals and dendrites were widely scattered in the neuropil. Macrophages containing degenerating electron-dense debris were also present. At 6 months post-diabetes, the freshly degenerating neuronal elements encountered were similar to those observed at 3-7 days. However, there were more degenerating profiles at 6 months post-diabetes compared to the earlier time intervals. Terminally degenerating axons were vacuolated and their axoplasm appeared amorphous. It is concluded that degenerative changes occur in the gracile nucleus of the spontaneously diabetic BB rat.  相似文献   

3.
Summary Several types of terminals were found in the three superficial collicular layers of Galago. At least two axon terminals with round vesicles (R1 and R2) could be distinguished on the basis of vesicle packing and electron density of the cytoplasmic and mitochondrial matrices. R1 axon terminals were characterized by aggregations of vesicles in an electron lucent cytoplasm and mitochondria with a relatively dark matrix, while in R2 axon terminals the vesicles were more evenly distributed in an electron dense cytoplasm and the mitochondrial matrix was pale. R2 endings occurred in clusters in the stratum griseum superficiale; they were absent in the stratum zonale. R1 endings were found in all three superficial collicular layers. Both types of R terminals made asymmetrical contacts with small dendrites, dendritic spines and F profiles. Profiles containing flattened vesicles and establishing symmetrical contacts were numerous, and many could be identified as dendrites by accepting as criteria for dendrites evenly spaced microtubules, clusters of ribosomes and the fact that these F profiles were postsynaptic to other terminals. F terminals were presynaptic to other F profiles, dendrites and somata; they were postsynaptic to R terminals and took part in serial synapses. Dendrodendritic contacts were frequent, somatodendritic contacts rare. After eye enucleation most R2 axon terminals underwent the electron dense degenerative reaction. The degeneration process was a lengthy one; many degenerating boutons were found 30 days after axotomy and some persisted up to 180 days postoperatively. There was strong indication that the superior colliculus received more crossed than uncrossed retinofugal fibers. The crossed and uncrossed retinocollicular axons terminated in two different substrata of the stratum griseum superficiale.This study was supported by N.I.H. Grant RR-00165 to Yerkes Regional Primate Research Center and N.I.H Grant EY 00638-03 to J. Tigges. — The opportunity to use the electron microscopic facilities of the Fernbank Science Center for the initial stage of this work is gratefully acknowledged.  相似文献   

4.
Summary Thermic lesions in the medial septum of adult rats result in dark degeneration of terminal boutons in the stratum moleculare and hilus of the area dentata. While most of the degenerating terminals are in synaptic contact with non-reactive cells, part of them end on dendrites of VIP-like immunoreactive neurons.  相似文献   

5.
S S Tay  W C Wong 《Acta anatomica》1990,139(4):367-373
The present study reports ultrastructural changes in the gracile nucleus of male Wistar rats after alloxan-induced diabetes. During the acute phase (3-7 days) degenerating electron-dense dendrites and axon terminals were dispersed in the neuropil. Degenerating dendrites were characterized by an electron-dense cytoplasm, swollen mitochondria, dilated endoplasmic reticulum and randomized ribosomes. Degenerating axon terminals were characterized by an electron-dense cytoplasm and clustering of small spherical agranular vesicles. Degenerating axon terminals may form the central element or part of a synaptic glomerulus. Macrophages were present in the neuropil and in the process of engulfing neuronal elements. During the medium phase (1-6 months), most of the degenerating dendrites and axon terminals had been engulfed or removed by macrophages. During the late phase (9-12 months), a second wave of degeneration occurred in the gracile nucleus, similar to the acute phase.  相似文献   

6.
The present investigation was focused on the ultrastructural changes in the neurons and glial cells in the retina of rats with experimentally-induced glaucoma. An experimental glaucoma model was created by limbal-derived vein cauterization. Animals were sacrificed at 1, 3 weeks and 3 months post-operation. Retinae were dissected and processed for electron microscopy. Neuronal degeneration was observed in all the different layers of the retina at both 1 and 3 weeks post-operation. Some degenerating neurons were found in the ganglion cell layer (GCL), inner nuclear layer (INL) and outer nuclear layer (ONL). And the dying neurons presented apoptotic-like more than necrotic neurons. Many degenerating axons and axon terminals were observed between neurons in the GCL, inner plexiform layer (IPL), INL, and outer plexiform layer (OPL). Activated astrocytes and microglial cells were present in close association with degenerating neurons and axons. The Müller cells in the INL also presented longer and darker processes with more microfilaments than in normal cells. Degenerating neuronal debris, degenerating axonal profiles and electron-dense bodies were often found in the cytoplasm of macrophages. The results suggest that both microglial cells and astrocytes are activated in the process of neuronal degeneration in the retina of experimentally-induced glaucomatous rats. It is hypothesized that they may play a protective role in removing degenerating neuronal elements in the retina after the onset of glaucoma.  相似文献   

7.
Axon degeneration is a feature of many peripheral neuropathies. Understanding the organismal response to this degeneration may aid in identifying new therapeutic targets for treatment. Using a transgenic zebrafish line expressing a bacterial nitroreductase (Ntr)/mCherry fusion protein in the peripheral sensory neurons of the V, VII, IX, and X cranial nerves, we were able to induce and visualize the pathology of axon degeneration in vivo. Exposure of 4 days post fertilization Ntr larvae to the prodrug metronidazole (Met), which Ntr metabolizes into cytotoxic metabolites, resulted in dose-dependent cell death and axon degeneration. This was limited to the Ntr-expressing sensory neurons, as neighboring glia and motor axons were unaffected. Cell death was rapid, becoming apparent 3–4 hours after Met treatment, and was followed by phagocytosis of soma and axon debris by cells within the nerves and ganglia beginning at 4–5 hours of exposure. Although neutrophils appear to be activated in response to the degenerating neurons, they did not accumulate at the sites of degeneration. In contrast, macrophages were found to be attracted to the sites of the degenerating axons, where they phagocytosed debris. We demonstrated that peripheral glia are critical for both the phagocytosis and inflammatory response to degenerating neurons: mutants that lack all peripheral glia (foxD3−/−; Ntr) exhibit a much reduced reaction to axonal degeneration, resulting in a dramatic decrease in the clearance of debris, and impaired macrophage recruitment. Overall, these results show that this zebrafish model of peripheral sensory axon degeneration exhibits many aspects common to peripheral neuropathies and that peripheral glia play an important role in the initial response to this process.  相似文献   

8.
The interrelationships between cortical efferents and terminals containing enkephalin-like immunoreactivity (ELI) were examined by combining anterograde degeneration with electron microscopic immunocytochemistry in the adult rat neostriatum. Two days following unilateral removal of the cerebral cortex, the brains were fixed by aortic arch perfusion, then sectioned and processed for the immunocytochemical localization of an antiserum directed against methionine (Met5)-enkephalin. The observed relationships between the degenerating cortical efferents and immunocytochemically labeled terminals were of two types. In the first, the degenerating and ELI containing terminals converged on the same unlabeled dendrite or dendritic spine. In the second, terminal and preterminal axons of the ELI containing neurons had one surface directly apposed to the plasma membrane of a degenerating axon terminal. These findings support the concept that neurons containing opioid peptides and cortical efferents modulate the output of common recipient neurons and may also directly interact with each other through presynaptic axonal mechanisms in the rat neostriatum.  相似文献   

9.
Using optical techniques by Nauta--Gygax, Wiitanen and Eager, degenerating nerve fibres and terminals were demonstrated to be present in the hypothalamic mammillary nuclei 9 days after a part of field 17 of the brain cortex was extirpated. Electron microscopic examination revealed different changes in large and small terminals of the boutons 5, 7 and 11 days after similar operations. The data represented demonstrate direct monosynaptic bilateral connections in field 17 of the optic cortex with the hypothalamic mammillary nuclei in cats. They are realized by fine fibrillae terminating mainly in large terminal boutons which form synapses on big and small dendritic branches. Thus, there is a structural base for the immediate influence of the optic cortex on the posterior hypothalamus.  相似文献   

10.
The ultrastructure of the lateral part of laminae VI and VII of the spinal gray matter (the location of most of the terminal branches of the rubrospinal tract) was investigated in cats under normal conditions and at various times after destruction of the red nucleus. The neuron population of this region is formed by cells fairly homogeneous in size (25–40µ). The structure of the dendritic profiles is simple and they carry only infrequent and small membranous appendages. Most synapses are axo-dendritic. The axon terminals are divided into three groups depending on the size and shape of the synaptic vesicles and the presence of post-synaptic specialization. A few glomerular axon terminals contacting with various structures are found. Small axon terminals located chiefly on dendrites and their appendages show degenerative changes 1–8 days after destruction of the red nucleus. As a rule the degenerating terminals contain round synaptic vesicles. The glomerular terminals do not degenerate.A. A. Bogomol'ets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 6, No. 6, pp. 610–618, November–December, 1974.  相似文献   

11.
The morphology of cells and the organization of axons were studied in Golgi-Colonnier and toluidine blue stained preparations from the medial cerebral cortex of the lizard Lacerta pityusensis. In the medial cortex, six strata were distinguished between the superficial glial membrane and the ependyma. Strata I and II formed the outer plexiform layer, stratum III formed the cellular layer, and strata IV go VI the inner plexiform layer. The outer plexiform layer contained smooth bipolar neurons; their dendrites were oriented anteroposteriorly and their axons were directed towards the posterior zone of the brain. Five neuronal types were observed in the cellular layer. The spinous pyramidal neurons had well-developed apical dendrites and poorly developed basal ones. Their axons entered the inner plexiform layer and gave off collaterals oriented anteroposteriorly. The small, sparsely spinous pyramidal neurons had poorly developed dendrites and their axons entered the inner plexiform layer. The spinous bitufted neurons had well-developed apical and basal dendritic tufts. Their axons gave off collaterals that reached the outer and inner plexiform layers of both the dorsomedial and dorsal cortices. The sparsely spinous horizontal neurons had dendrites restricted to the outer plexiform layer. Their axons entered the inner plexiform layer. The sparsely spinous, multipolar neurons had their soma close to stratum IV and their axons entered the outer plexiform layer. In stratum V of the inner plexiform layer were large, spiny polymorphic neurons; they had dendrites with long spines, and their axons reached the cellular layer. On the basis of these results, we have subdivided the medial cortex into two subregions: the superficial region, which contains the neurons of the cellular layer and their dendritic domains, and the deep region, strata V and VI, which contains the large, spiny polymorphic neurons. The neurons in the medial cortex of these lizards resembles those in the area dentata of mammals. On this basis, the superficial region may be compared to the dentate gyrus and the deep region to the hilar region of the hippocampus of mammals.  相似文献   

12.
The cytological changes elicited by central microinjections of the excitotoxin, ibotenic acid (IBO) were examined in the adult rat striatonigral system using electron microscopic immunocytochemistry. The chemical markers included tyrosine hydroxylase (TH), a biosynthetic enzyme in dopaminergic neurons, and glial fibrillary acidic protein (GFAP). Both short (1-7 day) and long (30-60 days) term effects were evaluated at the site of IBO-injections in the striatum and more distally in the substantia nigra, which both contributes afferents and receives efferents from the striatum. In the neostriatum at every survival period examined, TH-labeled axonal processes appeared equally numerous in the control and IBO-injected hemispheres. However, the TH-labeled axons in the striatum ipsilateral to the IBO-injection were slightly enlarged, and generally lacked synaptic densities. In the early period the remaining neuropil showed signs of edema and contained perikarya and dendrites with vacuolar or dense cytoplasm as well as intact, unlabeled terminals. Numerous astrocytes, and apparently demyelinated axons were more commonly seen at the 7 day period. At 30 and 60 days, bundles of myelinated axons, unlabeled axon terminals, and astrocytes containing a variety of cytosomes and other cytoplasmic inclusions were in close apposition to TH-labeled axon terminals. These results suggest that the dopaminergic terminals may serve neuromodulatory functions with respect to glia or other afferent axons remaining after IBO-injections in the striatum. In the substantia nigra, homolateral to the injection, a dense type of degeneration was seen in a few perikarya and dendrites at 7 days of survival. At this stage, electron dense anterograde degeneration also was seen in terminals contacting both TH-labeled and unlabeled dendrites. The secondary long term changes in nuclear groups located distal to the primary lesion are characteristic of certain types of progressive human neuropathological disorders.  相似文献   

13.
Summary Degenerating boutons, observed from 2 to 60 days after eye enucleation, displayed decreased plasma membrane density, increased axoplasmic density, and enlarged mitochondria with deformed cristae when compared with boutons from normal animals. There was also a loss of synaptic plasma membrane specialization and the boutons abnormally indented contiguous dendrites. The number and appearance of synaptic vesicles in some degenerating boutons were notably altered. Phagocytosis of boutons in most instances appeared to be accomplished by astrocytes. When degeneration was first apparent in some boutons, the subsynaptic organelle in the adjacent dendritic cytoplasm was enlarged, somewhat less dense and was associated with small granular and circular profiles. Subsynaptic organelles in experimental animals were absent from contiguities between dendrites and other cell processes, except in a few instances when only small portions of boutons remained at their synaptic sites, suggesting that the organelles disappeared when boutons had been completely phagocytized.Degenerating myelinated axons, observed from 2 to 300 days after enucleation, exhibited the same triad of features as degenerating boutons. They appeared to be phagocytized in most instances by dense glial processes, presumably oligodendrocytic, which were normally situated between the axon and its myelin sheath and were related to the inner mesaxon.This investigation was supported by U.S.P.H.S. Training Grants Nos. 2 T1 GM 202 T1 CA 505506, and 2RO 1 AM 368806.The author expresses his appreciation to Dr. A. J. Ladman for acquainting him with the techniques used in the study and to Dr. R. J. Barrnett for valuable criticism of this report. Gratitude is also extended to Mr. E. Z. Rutkowski for making the drawing.  相似文献   

14.
Summary The ultrastructural study of the lateral geniculate nucleus (LGN) of the tree shrew (Tupaia glis) revealed two types of neurons: (1) a large thalamocortical relay cell (TCR), which may bear cilia, and (2) a small Golgi type-II interneuron (IN) with an invaginated nucleus. The narrow rim of pale cytoplasm of the IN contains fewer lysosomes and fewer Nissl bodies than the cytoplasm of the TCR. The IN perikarya, which in some cases establish somatosomatic contacts, frequently contain flattened or pleomorphic synaptic vesicles. The ratio of TCR to IN is 31.Three types of axon terminals were observed in the LGN. Two of them contain round synaptic vesicles but differ in size. The large RL boutons undergo dark degeneration after enucleation; they are the terminals of retino-geniculate fibers. The smaller RS boutons show dark degeneration after ablation of the visual cortex; they are the terminals of the cortico-geniculate fibers. The third type of bouton (F1 does not degenerate after either intervention. The boutons of this type are filled with flattened vesicles and are believed to be intrageniculate terminals. F2-profiles were interpreted as presynaptic dendrites of the IN. The characteristic synaptic glomeruli found in the LGN contain in their center an optic terminal. These optic terminals establish synaptic contacts with dendrites or spine-like dendritic protrusions of TCRs as well as with presynaptic dendrites. Synaptic triads were also seen. The distribution of the individual types of synaptic contacts in layers 3 and 4 was determined. Layer 4 contains only one third of the retino-geniculate synapses and of the synaptic contacts of F1-terminals.  相似文献   

15.
1. The average volumes of dendritic domaines of relay neurons (P-neurons) were calculated and the quantitative relations to the neuronal elements situated in this area were investigated. Likewise we carried out measurements and calculations at the terminal parts of afferent axons, to find a conception concerning possible contacts between axons and P-neurons considering quantitative aspects. 2. The dendrites of one P-neuron are distributed in an area of about 0,008 mum3. In this area there are located somata of at least 120 other P-neurons and dendrites of altogether about 900 P-neurons. 3. The type-1-axons (cortical afferents) run almost linearly in the longitudinal system of the CGLd. Traversing a distance adequate to the diameter of a P-neuron (250 mum) the dendrites of 150 to 170 P-neurons may cross the course of one axon. At this distance the axon, however, has just set up about 50 boutons, thus synaptic contacts may be established with one third at most of the existing cells. A type-1-axon that is bifurcating in the entrance area into the CGLd is altogether of about 2000 mum in length and is able to develop about 420 presynaptic profiles. 4. The type-2-axons (retinal afferents) show a distinct terminal branching zone. The Golgi-Kopsch impregnated terminals of type-2a-axons are distributed in a space of 147000 mum3 capacity, the corresponding terminals of type-2b-axons in a space of 443000 mum3. The type-2a-axons having an average number of 23 boutons, may contact the dendritic branching zones of 25 P-neurons. There is a good reason to assume that type-2b-axons are in contact also with terminal dendritic parts of P-neurons. Thus the number of P-cells, which spread their dendrites into the terminal branching zone of one type-2b-axon may amount to 540. The average number of boutons of one type-2b-terminal, however, is only about 160. This means that synaptic contacts may be developed to the P-neurons-dendrites not exceeding 30% of them. 5. Various aspects of divergence of axon terminals in the albino rat's CGLd are discussed.  相似文献   

16.
Summary The enzyme aspartate aminotransferase was demonstrated cytochemically in the rat hippocampus 4, 7, and 14 days after unilateral entorhinal cortex lesion. At the light microscopic level the enzyme showed a significant activity decrease in the ipsilateral entorhinal terminal field which was similar at all postlesion times investigated. Non-denervated areas, i.e. the inner one-third of the dentate gyrus molecular layer and the radiatum layer of CA2/3, showed an increase of aminotransferase activities. At the electron microscopic level in the entorhinal terminal field of the control (unoperated) side aspartate aminotransferase was localized preferentially in a great number of boutons, containing the cytoplasmic and mitochondrial isoenzymes. Following entorhinal lesion a significant loss of these positively reacting boutons was seen. Most of the degenerating boutons contained reaction product but a small number was negative for aspartate aminotransferase. From 4 to 14 postlesion days the positively reacting boutons of the non-denervated supragranular zone expanded outward into the denervated area according to the known terminal proliferation of the commissural and associational systems. The remaining denervated entorhinal terminal field was reinnervated predominantly by negatively reacting boutons (probably terminal proliferations of septal afferents) and by a small number of positively reacting boutons (probably terminal proliferations of the crossed temporodentate pathway). The presence of cytoplasmic aspartate aminotransferase in the terminals of a well-known glutamatergic system is discussed in relation to the possible importance of this enzyme for the production of releasable glutamate.  相似文献   

17.
The enzyme aspartate aminotransferase was demonstrated cytochemically in the rat hippocampus 4, 7, and 14 days after unilateral entorhinal cortex lesion. At the light microscopic level the enzyme showed a significant activity decrease in the ipsilateral entorhinal terminal field which was similar at all postlesion times investigated. Non-denervated areas, i.e. the inner one-third of the dentate gyrus molecular layer and the radiatum layer of CA2/3, showed an increase of aminotransferase activities. At the electron microscopic level in the entorhinal terminal field of the control (unoperated) side aspartate aminotransferase was localized preferentially in a great number of boutons, containing the cytoplasmic and mitochondrial isoenzymes. Following entorhinal lesion a significant loss of these positively reacting boutons was seen. Most of the degenerating boutons contained reaction product but a small number was negative for aspartate aminotransferase. From 4 to 14 postlesion days the positively reacting boutons of the non-denervated supragranular zone expanded outward into the denervated area according to the known terminal proliferation of the commissural and associational systems. The remaining denervated entorhinal terminal field was reinnervated predominantly by negatively reacting boutons (probably terminal proliferations of septal afferents) and by a small number of positively reacting boutons (probably terminal proliferations of the crossed temporo-dentate pathway). The presence of cytoplasmic aspartate aminotransferase in the terminals of a well-known glutamatergic system is discussed in relation to the possible importance of this enzyme for the production of releasable glutamate.  相似文献   

18.
In adult crayfish, Procambarus clarkii, motoneurons to a denervated abdominal superficial flexor muscle regenerate long-lasting and highly specific synaptic connections as seen from recordings of excitatory postsynaptic potentials, even when they arise from the ganglion of another crayfish. To confirm the morphological origins of these physiological connections we examined the fine structure of the allotransplanted tissue that consisted of the third abdominal ganglion and the nerve to the superficial flexor muscle (the fourth ganglion and the connecting ventral nerve cord were also included). Although there is considerable degeneration, the allotransplanted ganglia display intact areas of axon tracts, neuropil, and somata. Thus in both short (6–8 weeks) and long (24–30 weeks) term transplants approximately 20 healthy somata are present and this is more than the five axons regenerated to the host muscle. The principal neurite and dendrites of these somata receive both excitatory and inhibitory synaptic inputs, and these types of synaptic contacts also occur among the dendritic profiles of the neuropil. Axon tracts in the allotransplanted ganglia and ventral nerve cord consist largely of small diameter axons; most of the large axons including the medial and lateral giant axons are lost. The transplanted ganglia have many blood vessels and blood lacunae ensuring long-term survival. The transplanted superficial flexor nerve regenerates from the ventral to the dorsal surface of the muscle where it has five axons, each consisting of many profiles rather than a single profile. This indicates sprouting of the individual axons and accounts for the enlarged size of the regenerated nerve. The regenerated axons give rise to normal-looking synaptic terminals with well-defined synaptic contacts and presynaptic dense bars or active zones. Some of these synaptic terminals lie in close proximity to degenerating terminals, suggesting that they may inhabit old sites and in this way ensure target specificity. The presence of intact somata, neuropil, and axon tracts are factors that would contribute to the spontaneous firing of the transplanted motoneurons. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
The organization of the outer plexiform layer (OPL) of the pigeon retina is described by electron microscopy and Golgi impregnation. Six types of photoreceptor, four types of horizontal cell, eight types of bipolar cell, and an interplexiform cell type were found by Golgi impregnation. The OPL was tri-stratified due to the endings of the photoreceptors at three different levels. This stratification was reflected in the laminar arrangement of the dendrites of the horizontal and bipolar cells. Electron microscopy showed that the synaptic endings of the photoreceptors made ribbon synapses, both triads and dyads, and basal junctions with the process of second-order neurons. Horizontal cells formed conventional chemical synapses, while horizontal cell axon terminals were extensively linked by gap junctions.  相似文献   

20.
In Drosophila, the type I motor terminals innervating the larval ventral longitudinal muscle fibers 6 and 7 have been the most popular preparation for combining synaptic studies with genetics. We have further characterized the normal morphological and physiological properties of these motor terminals and the influence of muscle size on terminal morphology. Using dye-injection and physiological techniques, we show that the two axons supplying these terminals have different innervation patterns: axon 1 innervates only muscle fibers 6 and 7, whereas axon 2 innervates all of the ventral longitudinal muscle fibers. This difference in innervation pattern allows the two axons to be reliably identified. The terminals formed by axons 1 and 2 on muscle fibers 6 and 7 have the same number of branches; however, axon 2 terminals are approximately 30% longer than axon 1 terminals, resulting in a corresponding greater number of boutons for axon 2. The axon 1 boutons are approximately 30% wider than the axon 2 boutons. The excitatory postsynaptic potential (EPSP) produced by axon 1 is generally smaller than that produced by axon 2, although the size distributions show considerable overlap. Consistent with vertebrate studies, there is a correlation between muscle fiber size and terminal size. For a single axon, terminal area and length, the number of terminal branches, and the number of boutons are all correlated with muscle fiber size, but bouton size is not. During prolonged repetitive stimulation, axon 2 motor terminals show synaptic depression, whereas axon 1 EPSPs facilitate. The response to repetitive stimulation appears to be similar at all motor terminals of an axon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号