首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catecholamines have been extensively reported to be present in most animal groups, including members of Echinodermata. In this study, we investigated the presence and distribution of catecholaminergic nerves in two members of the Holothuroidea, Holothuria glaberrima (Selenka, 1867) (Aspidochirotida, Holothuroidea) and Holothuria mexicana (Ludwig, 1875) (Aspidochirotida, Holothuroidea), by using induced fluorescence for catecholamines on tissue sections and immunohistochemistry with an antibody that recognizes tyrosine hydroxylase. The presence of a catecholaminergic nerve plexus similar in distribution and extension to those previously reported in other members of Echinodermata was observed. This plexus, composed of cells and fibers, is found in the ectoneural component of the echinoderm nervous system and is continuous with the circumoral nerve ring and the radial nerves, tentacular nerves, and esophageal plexus. In addition, fluorescent nerves in the tube feet are continuous with the catecholaminergic components of the radial nerve cords. This is the first comprehensive report on the presence and distribution of catecholamines in the nervous system of Holothuroidea. The continuity and distribution of the catecholaminergic plexus strengthen the notion that the catecholaminergic cells are interneurons, since these do not form part of the known sensory or motor circuits and the fluorescence is confined to organized nervous tissue.  相似文献   

2.
Summary Development of the nervous system of the pluteus larva of Strongylocentrotus droebachiensis was investigated using indirect immunofluorescence with antibodies against dopamine, GABA, and serotonin, and glyoxylic acid-induced fluorescence of catecholamines. Serotonergic cells first appear in full gastrulae; dopaminergic and GABAergic cells are present in early four-arm plutei. The number of neurons and the complexity of the nervous system increases through development of the pluteus. In the pluteus the dopaminergic component of the nervous system includes a ganglion in the lower lip of the mouth and a pair of ganglia at the base of the post-oral arms which extend axons along the base of the circumoral ciliary band. The distribution of cells visualized by glyoxylic acid-induced fluorescence is similar to that of dopaminergic cells. GABAergic neurons occur in the upper lip and in the wall of the esophagus. Serotonergic neurons are present in the lower lip; the pre-oral hood contains an apical ganglion which extends axons along the base of the epidermis overlying the blastocoel. The dopaminergic and GABAergic components of the nervous system are associated with effectors involved in feeding and swimming. The serotonergic component is not associated with any apparent effectors but may have a role in metamorphosis.  相似文献   

3.
The microturbellarians Stenostomum leucops (Catenulida), Microstomum lineare (Macrostomida), Promonotus schultzei (Proseriata) and Gyratrix hermaphroditus (Rhabdocoela) were subjected to the glyoxylic-acid-induced-fluorescence method to reveal catecholaminergic parts of their nervous systems. Histofluorescence indicative of catecholamines was evident in nerve cells and fibers of all investigated species. The patterns of distribution were compared to those of other neuroactive substances. The catecholaminergic fluorescence was at least partly confined to separate neuronal subsets in S. leucops and M. lineare and probably also in P. schultzei. In S. leucops, the presence of dopa and dopamine was demonstrated by high-pressure liquid chromatography. The occurence of catecholamines in these representatives of four orders of microturbellarians suggests that catecholamines arose early in the evolution of flatworms and underscores the importance of dopaminergic substances for the function of early nervous systems.  相似文献   

4.
Summary The quantitative aspects of the formaldehydeinduced fluorescence and the turnover of catecholamines in the sympathetic neuronal perikaryon of different sympathetic ganglia were studied after a blockade of the amine synthesis with -methyltyrosine. The concentration of catecholamines was determined by microfluorimetric quantitation method. The half-life of catecholamines in sympathetic neuronal perikarya was short and depended on the ganglion studied. The turnover rate of catecholamines in sympathetic neurons was highest in superior cervical and lowest in coeliac ganglion. Brightly fluorescent fibers were still seen five hours after the amine synthesis blockade, whereas almost all cell bodies had lost their fluorescence. Also small intensely fluorescent cells were still brightly fluorescent after the follow-up period. Microfluorimetrically determined turnover of catecholamines gave more detailed information about the turnover of catecholamines in sympathetic nervous system when compared to the biochemical methods used earlier.  相似文献   

5.
Summary The central heart of the coleoid cephalopod, Sepia officinalis, was studied using acetylcholinesterase and fluorescence histochemistry. Using histo- and cytochemical reactions, acetylcholinesterase was localized in the axolemma and axoplasm of specific cardiac nerve fibres, as well as in the sarcolemma and within the sarcotubular system of the muscle cells. Butyrylcholinesterase exhibited a different distribution, being found only in the luminal trabecular muscle layer. Glyoxylic-acid-induced fluorescence indicated the presence of catecholamines (emission maximum 470 nm) in cardiac nerve axons. These histochemical findings support the hypothesis that noradrenaline and/or dopamine and acetylcholine act antagonistically as natural transmitters. Fluorophores indicating the presence of serotonin were not observed. The present results are discussed in the light of previous pharmacological findings.  相似文献   

6.
Summary The cellular localization of biogenic monoamines in crustaceans was studied by means of a highly specific and sensitive fluorescence method devised by Falck and Hillarp. It was found that neurons displaying specific fluorescence in the central nervous system were confined to the protocerebrum, the medulla externa and interna and the ventral nerve cord. The method allows a distinction between the fluorophores of 5-hydroxytryptamine (and 5-hydroxytryptophan), which emit the yellow light, and the fluorophores deriving from the catecholamines (and DOPA), which emit the green light. Green-fluorescent neurons occurred abundantly in the aforementioned parts of the central nervous system while yellow-fluorescent neurons were sparsely present in the same parts.The present work has been carried out at the departments of Histology and Zoology at the University of Lund. The authors take great pleasure in expressing their warmest thanks for laboratory facilities, provided by Professors Erik Dahl (Zoological Institute) and Bengt Falck (Histological Institute).The research reported in this document has been sponsored by the Air Force Office of Scientific Research under Grant AF EOAR 66-14 through the European Office of Aerospace Research (OAR), United States Air Force and by a grant from the Swedish Natural Science Research Council 99-32 (nr 5995).  相似文献   

7.
Summary Fluorescence microscopical studies with the procedure of Falck and Hillarp have confirmed previous observations concerning the appearance of neurones with green and yellow specific fluorescence in the central and peripheral nervous system ofLumbricus terrestris.Chemical estimates show that the fluorescent neurones contain the primary catecholamines dopamine and noradrenaline, in addition to an indolamine, presumably 5-hydroxytryptamine. Rude's opinion that dopamine is present in a concentration twice that of noradrenaline is confirmed.Microspectrofluorometric analyses of the neurones displaying green specific fluorescence show two types of neurones, one presumably containing dopamine (mainly the receptor cells, certain small and some of the large cells in the cerebral ganglion). Some of the large cells of the cerebral ganglion and the bipolar cells near the base of the second segmental nerve in the ventral nerve cord show characteristics compatible with the simultaneous presence of both noradrenaline and dopamine in them.This work was supported by grants from the Helge Ax:son Johnson Foundation and was carried out within a reasearch organization sponsored by the Swedish Medical Research Council (projects No. B71-14X-2321-04A, B71-14X-712-06A, and B71-14X-56-07A).  相似文献   

8.
Dysfunction of the sympathetic nervous system might play an important role in disturbed 24h blood pressure regulation in transgenic hypertensive TGR (mREN2)27 (TGR) rats. Our study was performed to determine possible differences in activity of the sympathetic nervous system in TGR rats in comparison to their normotensive Sprague-Dawley (SPRD) controls; we measured plasma catecholamine and angiotensin concentrations throughout 24h under synchronized light-dark 12h:12H (LD 12:12) conditions. In the TGR rat strain, rhythms of plasma catecholamines were blunted, and the concentrations were significantly decreased. In addition, TGR rats showed increased plasma angiotensin I and II concentrations without any significant rhythm. An impaired autonomic regulation was confirmed by monitoring heart rate variability in TGR rats. Data showed that the TGR rat strain is characterized by a reduction in plasma catecholamines and an increase in angiotensin peptides. At present, it is not clear whether the reduction in catecholamines represents a decrease in sympathetic tone mediated by baroreflex activation or an increased catecholamine turnover induced by elevated angio-tensin II. However, the blunted, but normally phased, rhythms in plasma catecholamines in TGR rats make it unlikely that the sympathetic nervous system is mainly responsible for the inverse circadian blood pressure rhythm in the transgenic strain. (Chronobiology International, 18(3), 461–474, 2001)  相似文献   

9.
Localization of catecholamines in the nervous system of 12 species of Trematodes parthenitae from marine mollusks has been studied using the method of glyoxilic acid-induced fluorescence. Unlike primitive species with orthogon-like distribution of catecholamines, specialized ones have diffuse nervous plexus, which can be reduced in most specialized forms.  相似文献   

10.
Synopsis Sympathetic ganglia of 13 to 19-week-old human foetuses were cultured in small pieces with and without nerve growth factor for up to 5 weeksin vitro. The cultures were studied using phase-contrast, fluorescence and electron microscopy. Monoamines were demonstrated with the formaldehyde-induced fluorescence method, with and without pretreatment of the cultures with catecholamines or monoamine oxidase inhibitor.In the long-term cultures, primitive sympathetic cells, sympathicoblasts of types I and II, and young sympathetic neurons showed a fine structure identical to that described earlierin vivo. There were virtually no satellite or Schwann cells in the cultures. The neurons showed a considerable capacity to grow new nerve fibres in culture, even without nerve growth factor. Nerve terminals with accumulations of other nervous structures. Large granular vesicles were regularly found in the sympathicoblasts after glutaraldehyde-osmium tetroxide fixation. After permanganate fixation, dense-cored vesicles typical of adrenergic neurons were not seen, either in the perikarya, or in the processes, although it was possible to demonstrate specific fluorescence. No small intensely fluorescent (SIF) cells were observed.Variable formaldehyde-induced fluorescence was observed in the nerve cell perikarya and nerve fibres. The intensity of the fluorescence increased after treatment of the cultures with monoamine oxidase inhibitor and after incubation with catecholamines.  相似文献   

11.
Gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter in vertebrates and it has a similar inhibitory role in several invertebrate taxa. The transmitters serotonin, octopamine, catecholamines and histamine are present in flatworms while evidence for GABA is still lacking. Therefore, we have studied the occurrence of GABA-like immunoreactivity (IR) in the planarian nervous system. Specimens of Polycelis nigra were fixed in 4% 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide with 2% paraformaldehyde. The GABA-antiserum was raised in rabbits against GABA conjugated to keyhole limpet hemocyanin. Preabsorption with GABA-ovalbumin conjugate abolished all IR. The results were further confirmed with an monoclonal antibody and high pressure liquid chromatography (HPLC). In P. nigra GABA-like IR was seen as long, often varicose, sparsely distributed fibers in the ventral longitudinal nerve cords. IR was also located in a few cell somata in the brain and in the neuropil of the brain. The IR was restricted to the central nervous system and was absent in peripheral nerves and plexuses. The HPLC analysis supported the presence of GABA.Our results suggest that GABA is an interneuronal transmitter in P. nigra. The results also suggest a phylogenetically old origin of GABAergic neurotransmission.  相似文献   

12.
Synopsis It is known that hydrocortisone causes a great increase in the number of small intensely fluorescent (SIF) cells in the sympathetic ganglia when injected into newborn rats. The effect of hydrocortisone on nervous tissuein vitro has not been studied previously.Pieces of newborn rat sympathetic ganglia were cultivated in Rose chambers. Hydrocortisone was dissolved in the medium in concentrations of 1–9 mg/l. Both control and hydrocortisone-containing cultures were examined daily by phase-contrast microscopy, and the catecholamines were demonstrated histochemically by formaldehyde-induced fluorescence after 7 days in culture.All cultures showed outgrowths of axons and supporting cells elements, although these were less extensive in the groups of cultures with hydrocortisone. After a week, SIF cells with a green fluorescence were observed in the control explants. In all cultures with hydrocortisone, a concentration-dependent increase was observed in the fluorescence intensity and the number of the SIF cells in the explant; numerous SIF cells were also seen in the outgrowth. Some SIF cells showed processes and the longest processes were seen in cultures with the highest concentration of hydrocortisone.It is concluded that hydrocortisone causes an increased synthesis of catecholamines in the SIF cellsin vitro, and an increase in their number by affecting either their division or their differentiation from a more immature form, or both. This effect was a direct one and not mediated by any system other than the ganglion itself. Induction of enzyme synthesis by hydrocortisone is proposed as an explanation of the increase in catecholamine concentration.University of Melbourne Senior Research Fellow, September 1971-August 1972Sunshine Foundation and Rowden White Trust Overseas Research Fellow in the University on Melbourne, September 1971-August 1972  相似文献   

13.
Summary Blood-brain barrier lesions were produced on rabbits which had been depleted of their endogenous monoamines with a large dose of reserpine. After the lesion, catecholamines and the blood-brain barrier indicator dye trypan blue were injected. After freeze-drying, the cellular distribution of the injected substances was observed in the fluorescence microscope.It was found that, in the injured areas, the monoamines and trypan blue had penetrated into the brain parenchyma, where the monoamines were taken up and concentrated in nerve terminals. Trypan blue was found diffusely in the neuropil, while the nerve cell bodies and axons exhibited no fluorescence of trypan blue. On the control side, this type of fluorescence of catecholamines or trypan blue could not be detected.The lesions applied seem to be quite specific for the blood-brain barrier, as an active and energy-dependent uptake of catecholamines could be demonstrated in central monoamine nerve terminals. Thus the results also show that these terminals have the same reserpine-resistant membrane pump in vivo as earlier demonstrated for peripheral adrenergic neurons, and for central neurons in vitro.This investigation has been supported by research grants (B 66-158 and B 66-257) from the Swedish Medical Research Council and by a Public Health Service Research Grant (NB 05236-02) from the National Institute of Neurological Diseases and Blindness. For generous supplies of drugs we thank the Swedish Ciba, Stockholm, Sweden for reserpine (Serpasil®), the Swedish Pfizer, Stockholm, Sweden for nialamide (Niamid®) and Hoechst Anilin AB, Göteborg, Sweden for -methylnoradrenaline (Corbasil®).  相似文献   

14.
A fluorescence histochemical method was used to identify those structures in immature Fasciola hepatica which contain catecholamines. These amines were associated with the nervous system of the parasite. Catecholamine containing neuronal structures were distributed throughout the parasite. Catecholamine containing cells (possibly neurons) and fibers were most prominent in the head region. Bulb-like structures on the surface (possibly sensory papilla) containing catecholamines were connected to major Catecholamine nerves of the parasite. Dopamine was the only catecholamine that could be identified in extracts of immature flukes. Sixty-five percent of this amine was located in the anterior half of the parasite.  相似文献   

15.
Summary A monoclonal antibody against substance P was used for immunocytochemical staining of the central ganglia of the snail Helix aspersa and several peripheral tissues including the gut, reproductive system, cardiovascular system, tentacle and other muscles.Within the central ganglia many neurones, and many fibres in the neuropile and the nerves entering the ganglia, were stained for the SP-like material. The largest numbers of reactive cell bodies were in the pleural ganglia and on the dorsal surfaces of the pedal ganglia. A group of cells was also found, surrounding the right pedal-cerebral connective, that did not fluoresce, but were enveloped by reactive processes terminating directly onto the neurone somata.Specific staining was observed in all peripheral tissues examined and always appeared to be concentrated in nerve terminals. Most particularly these occurred in the heart and aorta, the pharyngeal retractor muscle and the tentacle. Although mostly present in muscular tissues, some fluorescence was also observed in the nervous layer surrounding the retina. The tentacular ganglion also contained immunoreactive cell bodies.  相似文献   

16.
17.
Haskó  György 《Neurochemical research》2001,26(8-9):1039-1044
The sympathetic nervous system plays a central role in establishing communication between the central nervous system and the immune system during inflammation. Inflammation activates the sympathetic nervous system, which causes release of the transmitters of the sympathetic nerv-ous system in the periphery. The transmitters of the sympathetic nervous system are the cate-cholamines noradrenaline and adrenaline and the purines ATP, adenosine, and inosine. Once these transmitters are released, they stimulate both presynaptic receptors on nerve terminals and post-synaptic receptors on immune cells. The receptors that are sensitive to catecholamines are termed adrenoceptors, whereas the receptors that bind purines are called purinoceptors. Stimulation of the presynaptic receptors exerts an autoregulatory effect on the release of transmitters. Ligation of the postsynaptic receptors on inflammatory cells modulates the inflammatory ac-tivities of these cells. The present review summarizes some of the most important aspects of the current state of knowledge about the interactions between the sympathetic nervous system and the immune system during inflammation with a special emphasis on the role of adreno and purinoceptors.  相似文献   

18.
Summary The distribution of FMRFamide-like immunoreactive neurons in the nervous system of the slug Limax maximus was studied using immunohistochemical methods. Approximately one thousand FMRFamide-like immunoreactive cell bodies were found in the central nervous system. Ranging between 15 m and 200 m in diameter, they were found in all 11 ganglia of the central nervous system. FMRFamide-like immunoreactive cell bodies were also found at peripheral locations on buccal nerve roots. FMRFamide-like immunoreactive nerve fibres were present in peripheral nerve roots and were distributed extensively throughout the neuropil and cell body regions of the central ganglia. They were also present in the connective tissue of the perineurium, forming an extensive network of varicose fibres. The large number, extensive distribution and great range in size of FMRFamide-like immunoreactive cell bodies and the wide distribution of immunoreactive fibres suggest that FMRFamide-like peptides might serve several different functions in the nervous system of the slug.  相似文献   

19.
20.
Summary Tyrosine hydroxylase, responsible for the formation ofl-dopa froml-tyrosine, has been identified in the central nervous system of the crayfish,Pacifastacus leniusculus (Crustacea, Decapoda). It requires pterine as cofactor and is inhibited by a number of known tyrosine hydroxylase inhibitors; iron-chelators, tyrosine analogues and also by the catecholamines, dopamine and noradrenaline. Iron enhances the activity of the enzyme. It differs from the vertebrate tyrosine hydroxylase in having a more alkaline pH optimum and a higher affinity for the pterine cofactor. Kinetic studies were performed andK m andV max values are presented. Dopa formed was identified and quantitatively measured by high pressure liquid chromatography (HPLC) and electrochemical detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号