首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pyrene-labeling of acid-soluble (type I) and acid-insoluble collagens from young and old rat tail tendon has been investigated. The pyrene excimer fluorescence is associated with stabilized pyrene labels bound to two adjacent aldehydes in monomeric young collagens. Polymeric young collagens, as well as monomeric and polymeric old collagens, tend to lose this specific arrangement. This is shown by salt and new chromatographic fractionation of monomeric and polymeric collagens. During denaturation, pyrene labels are released from saturated aldehydes in both α1 and α2 chains. This unstable pyrene-labeling is stabilized by NaBH4 reduction of the hydrazone bonds between aldehyde groups and pyrene-containing hydrazines. This stabilization reveals that α1 contains more aldehyde groups than does α2 in young collagen. Pepsin-solubilized, acid-insoluble collagens are partly cross-linked and, like acid-soluble collagens, exhibit the fluorescence of pyrene aggregates probably located atunidentified cross-links, different from unsaturated aldehyde-containing cross-links in acid-soluble collagens.  相似文献   

2.
Sahoo D  Narayanaswami V  Kay CM  Ryan RO 《Biochemistry》2000,39(22):6594-6601
Manduca sexta apolipophorin III (apoLp-III), an 18-kDa, monomeric, insect hemolymph apolipoprotein, is comprised of five amphipathic alpha-helices arranged as a globular bundle in the lipid-free state. Upon lipid binding, it is postulated that the bundle opens, exposing a continuous hydrophobic surface which becomes available for lipid interaction. To investigate lipid binding-induced helical rearrangements, we exploited the unique fluorescence characteristics of N-(1-pyrene)maleimide. Pyrene is a spatially sensitive extrinsic fluorescent probe, which forms excited-state dimers (excimers) upon close encounter with another pyrene molecule. Cysteine residues were introduced into apoLp-III (which otherwise lacks cysteine) at Asn 40 (helix 2) and/or Leu 90 (helix 3), creating two single-cysteine mutants (N40C-apoLp-III and L90C-apoLp-III) and N40C/L90C-apoLp-III, a double-cysteine mutant, which were labeled with pyrene maleimide. Pyrene-labeled N40C/L90C-apoLp-III, but not the pyrene-labeled single-cysteine mutants, exhibited strong excimer fluorescence in the lipid-free, monomeric state. Guanidine hydrochloride titration and temperature studies revealed a loss in excimer fluorescence, accompanied by a loss in the molar ellipticity of the protein. When apoLp-III interacts with phospholipid vesicles to form disklike complexes, a significant loss in excimer fluorescence was noted, indicating that the helices bearing the pyrene moieties diverge from each other. Pyrene excimer fluorescence was further employed to examine the relative orientation of lipid-bound apoLp-III molecules. Pyrene-labeled N40C- or L90C-apoLp-III displayed no excimer fluorescence in the disk complexes, while complexes prepared with an equal mixture of both single-labeled mutants did emit excimer fluorescence, indicating apoLp-III adopts a preferred nonrandom orientation around the perimeter of the bilayer disk. These studies establish pyrene excimer fluorescence as a useful spectroscopic tool to address intra- and intermolecular interactions of exchangeable apolipoproteins upon binding to lipid.  相似文献   

3.
A fluorescent triglyceride, 1(3)-pyrenylbutanoyl-2,3(1,2)-dipalmitoyl-sn-glycerol, was synthesised, characterised by NMR and mass spectrometry, incorporated into a lipid emulsion and used as a fluorescent substrate for pancreatic lipase. It is shown that the product of the reaction, pyrene butyric acid, diffuses into the aqueous phase resulting in a decrease in the excimer fluorescence of the pyrene fluorophore in the emulsion and an increase in its monomer fluorescence. The phenomenon can be used to assay the enzyme thereby cirumventing the need to extract the fatty acid product.  相似文献   

4.
Oligonucleotide conjugates bearing two pyrene residues attached to 5′-phosphate through a phosphoramide bond were synthesised. Fluorescence spectra of the conjugates show a peak typical of monomer emission (λmax 382 nm) and a broad emission peak with λmax 476 nm, which indicates the excimer formation between the two pyrene residues. Conjugation of these two pyrene residues to the 5′-phosphate of oligonucleotides does not affect the stabilities of heteroduplexes formed by conjugates with the corresponding linear strands. A monomer fluorescence of the conjugates is considerably affected by the heteroduplex formation allowing the conjugates to be used as fluorescent hybridisation probes. The 5′-bis-pyrenylated oligonucleotides have been successfully used for investigation of affinity and kinetics of antisense oligonucleotides binding to the multidrug resistance gene 1 (PGY1/MDR1) mRNA. The changes of excimer fluorescence of the conjugates occurring during hybridisation depended on the structure of the binding sites: hybridisation to heavily structured parts of RNA resulted in quenching of the excimer fluorescence, while binding to RNA regions with a loose secondary structure was accompanied by an enhancement of the excimer fluorescence. Potentially, these conjugates may be considered as fluorescent probes for RNA structure investigation.  相似文献   

5.
The interactions of salmon calcitonin with glycosphingolipid sulfatide are studied by right angle light scattering from the lipid suspension, by the excimer to monomer ratio (E/M) of the fluorescence intensity of pyrene phosphatidylcholine and pyrene sulfatide and by the leakage of carboxyfluorescein. It was found that calcitonin strongly modified the structure of the sulfatide aggregate, as indicated by the light scattering determinations. At a lipid peptide ratio 100:1 (molar ratio) light scattering from the suspension was negligible, indicating the formation of peptide-sulfatide complexes with a structure different from that of the lipid aggregate. The interactions of calcitonin with sulfatide when the latter is a component of a bilayer were also evaluated. A specific calcitonin-membrane sulfatide interaction was demonstrated by determining the temperature-dependent E/M of pyrene phosphatidylcholine and pyrene sulfatide in dipalmitoyl phosphatidylcholine/sulfatide (80:20, molar ratio) liposomes. The E/M curves were modified by calcitonin only when the liposomes were labelled with fluorescent sulfatide which probes the sulfatide behavior in the membrane. Furthermore, the addition of calcitonin to the incubation medium of liposomes containing sulfatide promoted the release of vesicle entrapped carboxyfluorescein without disrupting the bilayer structure, the release being correlated with the amount of sulfatide in the bilayer and the calcitonin concentration in the medium.  相似文献   

6.
The two cysteine residues (Cys-35 and Cys-84) of bovine cardiac troponin C (cTnC) were labeled with the pyrene-containing SH-reactive compounds, N-(1-pyrene) maleimide, and N-(1-pyrene)iodoacetamide in order to study conformational changes in the regulatory domain of cTnC associated with cation binding and cross-bridge attachment. The labeled cTnC exhibits the characteristic fluorescence spectrum of pyrene with two sharp monomer fluorescence peaks and one broad excimer fluorescence peak. The excimer fluorescence results from dimerization of adjacent pyrene groups. With metal binding (Mg2+ or Ca2+) to the high affinity sites of cTnC (sites III and IV), there is a small decrease in monomer fluorescence but no effect on excimer fluorescence. In contrast, Ca2+ binding to the low affinity regulatory (site II) site elicits an increase in monomer fluorescence and a reduction in excimer fluorescence. These results can be accounted for by assuming that the pyrene attached to Cys-84 is drawn into a hydrophobic pocket formed by the binding of Ca2+ to site II. When the labeled cTnC is incorporated into the troponin complex or substituted into cardiac myofibrils the monomer fluorescence is enhanced while the excimer fluorescence is reduced. This suggests that the association with other regulatory components in the thin filament might influence the proximity (or mobility) of the two pyrene groups in a way similar to that of Ca2+ binding. With the binding of Ca2+ to site II the excimer fluorescence is further reduced while the monomer fluorescence is not changed significantly. In myofibrils, cross-bridge detachment (5 mM MgATP, pCa 8.0) causes a reduction in monomer fluorescence but has no effect on excimer fluorescence. However, saturation of the cTnC with Ca2+ reduces excimer fluorescence but causes no further change in monomer fluorescence. Thus, the pyrene fluorescence spectra define the different conformations of cTnC associated with weak-binding, cycling, and rigor cross-bridges.  相似文献   

7.
The transfer of pyrene between 1-acid glycoprotein, acethylcholinesterase and sonicated liposomes was used to monitor glycoprotein-protein interaction on the lipid bilayer. When a density solution of glycoprotein or protein labeled with pyrene was mixed with unlabeled suspension of free-phospholipid liposomes, or suspensions containing the complexes of glycoprotein-lipid, protein-lipid, or glycoprotein-protein-lipid, pyrene excimer fluorescence increased with a half-time of approximately 30–50 msec. Since the increase in excimer fluorescence indicates an increase in the microscope concentrations of pyrene, the observed fluorescence change reflects pyrene transfer. The half-times for the increase in excimer fluorescence were determined in the presence of glycoprotein and protein in the liposomes. On the basis of the determined half-times it was concluded that both, glycoprotein and protein are bound on the lipid bilayer. Our data also suggest that the thickness of the lipid bilayer is significantly changed in this case. The observation suggests strongly that the limiting step in the transfer of pyrene is not the dissociation of pyrene, but the uptake of the pyrene monomers by the lipid phase.  相似文献   

8.
We report here the design, synthesis and application of pyrene binary oligonucleotide probes for selective detection of cellular mRNA. The detection strategy is based on the formation of a fluorescent excimer when two pyrene groups are brought into close proximity upon hybridization of the probes with the target mRNA. The pyrene excimer has a long fluorescence lifetime (>40 ns) compared with that of cellular extracts (~7 ns), allowing selective detection of the excimer using time-resolved emission spectra (TRES). Optimized probes were used to target a specific region of sensorin mRNA yielding a strong excimer emission peak at 485 nm in the presence of the target and no excimer emission in the absence of the target in buffer solution. While direct fluorescence measurement of neuronal extracts showed a strong fluorescent background, obscuring the detection of the excimer signal, time-resolved emission measurements indicated that the emission decay of the cellular extracts is ~8 times faster than that of the pyrene excimer probes. Thus, using TRES of the pyrene probes, we are able to selectively detect mRNA in the presence of cellular extracts, demonstrating the potential for application of pyrene excimer probes for imaging mRNAs in cellular environments that have background fluorescence.  相似文献   

9.
A novel fluorescent phospholipid analogue, 1-triacontanoyl-2-(pyren-1-yl)hexanoyl-sn-glycero-3-phosphocholine (C30PHPC) was employed as a substrate for human pancreatic phospholipase A2. C30PHPC has a main endothermic phase transition with Tm at 46 degrees C as determined by differential scanning calorimetry (DSC). For an aqueous dispersion of C30PHPC the ratio of the intensities of pyrene excimer and monomer fluorescence emission, (IE/IM) has a maximum between 32 and 36 degrees C. The excimer emission intensity (at 480 nm) exceeds the monomer emission intensity (at 400 nm) 6.5-fold thus indicating a close packing of the phospholipid pyrene moieties in the lipid phase. C30PHPC has a limiting mean molecular area of 37 A2 at surface pressure 35 dyn cm-1 as judged by the compression isotherm at an air-water interphase. The hydrolysis of C30PHPC by human pancreatic phospholipase A2 was followed by monitoring the increase in the pyrene monomer fluorescence emission intensity occurring as a consequence of transfer of the reaction product, pyren-1-yl hexanoic acid into the aqueous phase. The enzyme reaction exhibited an apparent Km of 2.0 microM substrate. Calcium at a concentration of 0.2 mM activated the enzyme 4-fold. Maximal hydrolytic rates were obtained at 45 degrees C and at pH between 5.5 and 6.5. The enzyme reaction could be inhibited by 5 mM EDTA, confirming the absolute requirement for Ca2+ of this enzyme. The present fluorimetric assay easily detects hydrolysis of C30PHPC in the pmol min-1 range. Accordingly, less than nanogram levels of human pancreatic phospholipase A2 can be detected.  相似文献   

10.
In vitro interactions of benzo[a]pyrene (BaP) with acid-soluble type I collagen from rat tail tendon have been investigated. The fluorescence of BaP increases in the presence of collagen. Bound BaP inhibits the formation of collagen fibrils in solution. When BaP-collagen complexes are irradiated in air with UV (365 nm) light, BaP rapidly undergoes photooxidation with the further inhibition of fibril formation. Viscosity and circular dichroism (CD) studies show that neither BaP nor further UV-irradiation alters the size or helical conformation of the protein. During thermal denaturation of collagen, BaP fluorescence changes. Collagen from young rat tail tendon shows a pronounced drop at about 38 degrees C, whereas that from old rat tail tendon exhibits an increase with a plateau in the same temperature range. These anomalous changes are observed when tyrosine residues, present only in the non-helical terminal telopeptides of collagen, are excited at 275 nm, but not by direct BaP excitation at 387 nm. These findings suggest that the specific hydrophobic telopeptide region, which plays an important role in fibril formation, are affected by bound BaP.  相似文献   

11.
Treatment of Physarum histone with iodoacetoxypyrene selectively derivatives a single H3 cysteine with acetoxypyrene. Microplasmodia can incorporate this AP-H3 into nucleosomes. The distinction between blue monomeric pyrene fluorescene and green excimer pyrene fluorescence allows detection of changes in distance between the closely positioned H3 cysteines in nucleosomes. Fluorescence of nucleosomes labeled in vivo with AP-H3 is almost exclusively of the eximer form, indicating that H3 cysteines are within a few angstroms of each other in the nucleosome core. In histones recovered from these nucleosomes all detectable pyrene is covalently bound to H3. When Physarum is exposed sequentially to labeled followed by unlabeled histone, there is a rapid appearance of green excimer emission in nucleosomes after addition of labeled histone and no apparent switch from excimer to monomer fluorescence after several replications of the genome in the presence of unlabeled histone. These experiments provide evidence in favor of a model for conservative distribution of nucleosomal histones during chromatin replication.  相似文献   

12.
Bovine cardiac troponin C was modified by N-(1-pyrene)maleimide at Cys-35 and Cys-84; the Ca2+-induced conformational changes were followed by measuring pyrene fluorescence. In isolated troponin C, the saturation of Ca2+, Mg2+-sites leads to a simultaneous increase in the pyrene monomer as well as to a decrease in the pyrene excimer fluorescence, whereas the saturation of Ca2+-specific sites results in a slight decrease in the fluorescence of pyrene monomer. Troponin T does not influence the dependence of pyrene-troponin C fluorescence on Ca2+ concentration. Within the equimolar complex of troponin C and troponin I, the saturation of Ca2+, Mg2+-sites has no effect on pyrene fluorescence, whereas the saturation of Ca2+-specific sites leads to a simultaneous decrease of both pyrene monomer and pyrene excimer fluorescence. It is supposed that troponin I diminishes the conformational changes in troponin C that are induced by the saturation of Ca2+, Mg2+-sites and enhances the conformational changes induced by the saturation of Ca2+-specific sites of troponin C.  相似文献   

13.
Horse plasma gelsolin was labelled with the sulfhydryl-specific fluorescent reagent N-(1-pyrenyl)iodoacetamide. The level of incorporation of probe was 1.6 +/- 0.3 mol pyrene/mol gelsolin. The circular dichroism spectrum of pyrenyl-gelsolin and its ability to interact with muscle actin were not different from that found for unmodified gelsolin. The emission from pyrenyl-gelsolin was dominated by a broad emission band centred near 483 nm, characteristic of the presence of pyrene excimers. Analysis of excitation spectra for the monomer and excimer-type fluorescence suggested that ground-state interactions may occur between adjacent pyrenes in the gelsolin structure. In the case either of excimer formation or of ground-state pyrene-pyrene interactions in doubly labelled gelsolin molecules, the modified Cys residues must be in close proximity in the folded protein structure. Thermal denaturation of gelsolin could be monitored by observing the decrease in excimer emission that accompanied heating and unfolding of the tertiary structure. While heat treatment alone did not eliminate excimer fluorescence, digestion of gelsolin with chymotrypsin completely abolished such emission. Also, pyrenyl-gelsolin prepared and studied in 6 M guanidine-HCl exhibited fluorescence characteristic of pyrene monomers exclusively.  相似文献   

14.
Pyrene rapidly penetrates into isolated zoospores of phytopathogenic fungus Phytophthora infestans localizing predominantly in lipid bodies. An analysis of steady-state monomer and excimer fluorescence spectra, as well as of vibronic structure has suggested a considerable part of the fluorescent probe to be located in a lipid environment. Pyrene partition into hydrophilic phase was observed at its high concentrations. Catalytic hydrogenation of unsaturated lipids in zoospores in situ reduced excimer production. The kinetics of changes of pyrene excimerization suggest that hydrogenation affects both the surface and the intrinsic lipids of the zoospores. The usefulness of pyrene as a fluorescent probe for unsaturated lipids in membranes and lipid bodies of intact cells, and the possible role of eicosapolyunsaturated fatty acids in induction of immune response in potato plants are discussed.  相似文献   

15.
In this work we have applied a kinetic scheme derived from fluorescence kinetics of pyrene-labeled phosphatidylcholine in phosphatidylcholine membrane to explain the fluorescence quenching of 1-palmitoyl-2-(10-[pyrenl-yl]-sn-glycerol-3-phosphatidylchol ine (PPDPC) liposomes by tetracyanoquinodimethane (TCNQ). The scheme was also found to be applicable to neat PPDPC and the effect of the quencher could be attributed to certain steps of the proposed mechanism. The TCNQ molecules influence the fluorescence of pyrene moieties in PPDPC liposome in two ways. Firstly, an interaction between the quencher molecule and the pyrene monomer in the excited state quenches monomer fluorescence and effectively prevents the diffusional formation of the excimer. Secondly, an interaction between the quencher molecule and the excited dimer quenches the excimer fluorescence. The TCNQ molecule does not prevent the formation of the excimer in pyrene moieties aggregated in such a way that they require only a small rotational motion to attain excimer configuration. The diffusional quenching rate constant is calculated to be 1.0 x 10(8) M-1 s-1 for the pyrene monomer quenching and 1.3 x 10(7) M-1 s-1 for the pyrene excimer quenching. The diffusion constant of TCNQ is 1.5 x 10(-7) cm2 s-1 for the interaction radii of 0.8-0.9 nm. The TCNQ molecules are practically totally partitioned in the membrane phase.  相似文献   

16.
We are using fluorescent endogenous phospholipids in virus membranes to study the factors that promote fusion on interaction with receptor membranes. To this end, vesicular stomatitis virus (VSV) grown in baby hamster kidney (BHK-21) cells was biologically labeled with fluorescent lipids, primarily phosphatidylcholine and phosphatidylethanolamine, derived from pyrene fatty acids. The pyrene lipids present in the virions showed a fluorescence spectrum typical of pyrene with an intense monomer and a broad excimer. Interaction of pyrene lipid labeled VSV with serum lipoproteins led to a spontaneous fast transfer of the small amount of pyrene fatty acids present in the envelope (t1/2 less than or equal to 7 min), followed by a considerably slower transfer of pyrene phospholipids from the membrane of the virions (t1/2 greater than or equal to 12 h). Incubation of pyrene phospholipid labeled VSV with phosphatidylserine small unilamellar vesicles resulted in fusion at low pH (pH 5.0) as measured by the change in the excimer/monomer fluorescence intensity ratio. Fusion kinetics was rapid, reaching a plateau after 4 min at pH 5.0 and 37 degrees C. Only negligible fusion was noted at neutral pH or at 4 degrees C. Fully infectious virions labeled biologically with fluorescent lipids provide a useful tool for studying mechanisms of cell-virus interactions and neutralization of viral infectivity by specific monoclonal antibodies reactive with viral membrane glycoprotein.  相似文献   

17.
K Y Horiuchi  S Chacko 《Biochemistry》1988,27(22):8388-8393
Cysteine residues of caldesmon were labeled with the fluorescent reagent N-(1-pyrenyl)maleimide. The number of sulfhydryl (SH) groups in caldesmon was around 3.5 on the basis of reactivity to 5,5'-dithiobis(2-nitrobenzoate); 80% of the SH groups were labeled with pyrene. The fluorescence spectrum from pyrene-caldesmon showed the presence of excited monomer and dimer (excimer). As the ionic strength increased, excimer fluorescence decreased, disappearing at salt concentrations higher than around 50 mM. The labeling of caldesmon with pyrene did not affect its ability to inhibit actin activation of heavy meromyosin Mg-ATPase and the release of this inhibition in the presence of Ca2+-calmodulin. Tropomyosin induced a change in the fluorescence spectrum of pyrene-caldesmon, indicating a conformational change associated with the interaction between caldesmon and tropomyosin. The affinity of caldesmon to tropomyosin was dependent on ionic strength. The binding constant was 5 x 10(6) M-1 in low salt, and the affinity was 20-fold less at ionic strengths close to physiological conditions. In the presence of actin, the affinity of caldesmon to tropomyosin was increased 5-fold. The addition of tropomyosin also changed the fluorescence spectrum of pyrene-caldesmon bound to actin filaments. The change in the conformation of tropomyosin, caused by the interaction between caldesmon and tropomyosin, was studied with pyrene-labeled tropomyosin. Fluorescence change was evident when unlabeled caldesmon was added to pyrene-tropomyosin bound to actin. These data suggest that the interaction between caldesmon and tropomyosin on the actin filament is associated with conformational changes on these thin filament associated proteins. These conformational changes may modulate the ability of thin filament to interact with myosin heads.  相似文献   

18.
We describe a simple and sensitive method for staining of the carbohydrate moiety of glycoproteins in polyacrylamide or agarose electrophoretic gels. Gels are incubated in a solution of fluorescein-labeled concanavalin A. Following destaining with a neutral buffer, glycoproteins exhibit fluorescence under long-range ultraviolet light. Thus, the glucose/mannose containing β- and γ-chains of human fibrinogen give fluorescent bands, whereas the carbohydrate-free α-chain does not react. Less than 100 ng of hexose bound to fibrinogen β- or γ-chains could be detected. The procedure is suitable for staining of other carbohydrate residues in glycoproteins, which can be recognised by specific agglutinins, as shown by binding of fluorescein-labeled lectins from Ricinus communis to galactose residues of fibrinogen.  相似文献   

19.
The fluorescence decays of pyrene in small and large unilamellar L,-dipalmitoylphosphatidylcholine vesicles have been investigated as a function of probe concentration and temperature. When the molar ratio of pyrene to phospholipid equals 1:3000, no excimer emission is observed and the fluorescence decays are mono-exponential. When this ratio is equal to or higher than 1:120, excimer formation is observed.Above the phase transition temperature the observed fluorescence decays of monomer and excimer can be adequately described by a bi-exponential function. The monomer decays can be equally well fitted to a decay law which takes into account a time-dependence in the probe diffusion rate constant. The fluorescence decay kinetics are compatible with the excimer formation scheme which is valid in an isotropic medium. The excimer lifetime and the (apparent) rate constant of excimer formation have been determined as a function of probe concentration at different temperatures above the phase transition temperature. The activation energy of excimer formation is found to be 29.4±1.3 kJ/mol. In small unilamellar vesicles the diffusion constant associated with the pyrene excimer formation process varies from 8.0x10-7 cm2/s at 40°C to 2.2x10-6 cm2/s at 70°C.Below the phase transition temperature the monomer decays can be described by a decay law which takes into account a time dependence of the rate constant of excimer formation. The lateral diffusion coefficient of pyrene calculated from the decay fitting parameters of the monomer region varies from 4.0x10-9 cm2/s at 20°C to 7.9x10-8 cm2/s at 35°C. No significant difference could be observed between the pyrene fluorescence decay kinetics in small and large unilamellar vesicles.Abbreviations SUV small unilamellar vesicles - LUV large unilamellar vesicles - DPPC dipalmitoylphosphatidylcholine - DMPC dimyristoylphosphatidylcholine - FRAP fluorescence recovery after photobleaching Part of this research has been presented at the 5th international symposium on surfactants in solution. Bordeaux, July 9th–13th 1984  相似文献   

20.
Fluorometric assay for pancreatic cholesterylester hydrolase   总被引:1,自引:0,他引:1  
A fluorescent cholesterylester analogue, cholesteryl 6-pyrenylhexanoate (ChPH), was used as a substrate for pancreatic cholesterylester hydrolase (CEH, EC 3.1.1.13). The substrate consisted of ChPH in egg phosphatidylcholine stabilized microemulsion with the aqueous phase containing deoxycholate below its critical micellar concentration. Due to the high local concentration of the pyrene moiety in the ChPH phase the fluorescence emission due to monomeric pyrene (IM) is greatly exceeded by the excimer fluorescence intensity (IE). Upon reacting with CEH 6-pyrenylhexanoic acid and free cholesterol are formed. The fluorescent product, 6-pyrenylhexanoic acid, is transferred into the aqueous phase containing deoxycholate, thus resulting in an enhanced fluorescence due to monomeric pyrene. CEH activity can thus be assessed directly by monitoring IM vs. time without product separation. Useful assay conditions were found to be 10 microM ChPH, 0.1 microM egg phosphatidylcholine, 2 mM sodium deoxycholate at 25 degrees C and pH 6.5-7.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号