首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
2.
Basal aryl hydrocarbon hydroxylase (AHH) activity and its kinetic properties were studied as a function of proliferation in C3H mouse embryo 10T12 CL8 cells. Activity was low in freshly plated cells, increased during exponential growth, peaked at confluency, and then declined. The apparent Km-values for benzo[a]pyrene (BP) and NADPH were less in proliferating (approx. 0.37 μM BP, 3.3 nM NADPH) than in confluent cells (0.74–1.39 μM BP, 33.4–53.4 nM NADPH). Cells at different growth states responded differently to benz[a]anthracene (BA) and aminophylline, an inhibitor of cyclic nucleotide phosphodiesterases. When cells were harvested at the mid log phase of growth, 12 h of exposure to aminophylline caused maximum induction, while 24 h of BA treatment were required. In contrast, at early confluence, 12 h of BA treatment gave the greatest levels of activity, while exposure to aminophylline did not induce AHH. In fact, decreases in activity were observed. These differences are indicative of different regulatory mechanisms for BA and aminophylline induction. They also suggest the regulation of basal AHH by cyclic nucleotides changes during growth. The exposure times giving maximum activity were used to determine the kinetic properties of BA-induced activity. As with basal AHH, the Km-value for BP was less in log phase (0.2–0.4 μM BP) than in confluent cells (0.64–1.05 μM BP). Moreover, the Km-values for BP and NADPH in control cultures at confluency (0.10–0.14 μM BP, 15.4–23.2 nM NADPH) were less than those for BA-treated cells (0.64 μM BP, 37.9–54.8 nM NADPH) under the same nutritional conditions. The finding that the Km-value for BP is lower in rapidly dividing cells than in confluent cells may help to explain why proliferating cells are more susceptible to transforming agents.  相似文献   

3.
Induction of aryl hydrocarbon hydroxylase (AHH) and 7-ethoxyresorufin-O-deethylase (7-EOD) activities as well as of benzo[a]pyrene (BP) metabolite formation in rat prostatic microsomes has been demonstrated after treatment with beta-naphthoflavone (BNF). The capacity to convert promutagenic compounds to ultimate mutagenic metabolites in the Ames' Salmonella assay by 5000 X g supernatant of rat ventral prostate was investigated. Male rats were treated with BNF, polychlorinated biphenyls (PCB; Arochlor 1254), phenobarbital (PB) and the vehicle, corn oil. PCB or BNF pretreatment increased the AHH- and 7-EOD activities 100-200-fold in the rat prostate 5000 X g supernatant (S-5 fraction). Epoxide hydrolase (EH) and glutathione-S-transferase (GST) activities were not affected while UDP-glucuronosyltransferase (UDP-GT) was increased 2.2- and 2.5-fold by PCB and BNF, respectively. PB did not significantly affect any of the enzyme activities measured. A dose-dependent increase in mutagenic response versus amount of 5000 X g supernatant and promutagen (aflatoxin B1 (AFB), 2-aminofluorene (2-AF), BP) was observed. The most pronounced activation was obtained with S-5 fraction from BNF- or PCB-treated rats. The great sensitivity of prostatic AHH to certain inducers and the capacity of the prostate to produce mutagenic metabolites might be of importance for initiation of prostatic cancer by environmental factors.  相似文献   

4.
Pretreatment of rats by ellipticines enhanced the microsomal concentration of cytochrome P-450, benzo[a]pyrene (BP) metabolism and activation and, to a smaller extent, ethoxycoumarin deethylation, but not acetanilide hydroxylation. This increased BP biotransformation was essentially due to the formation of bay-region metabolites, BP 9,10-diol, BP 7,8-diol and 9-hydroxy-BP, or to the formation of BP 7,8-diol-9,10-epoxide- and of 9-hydroxy-BP 4,5-oxide-DNA adducts. In the ellipticine series, 9-fluoroellipticine (9-FE) presents a slight inducing potency compared with the parent and 9-hydroxy molecules. Pretreatment of mice with 9-hydroxyellipticine (9-OHE) led also to an increased mutagenicity of BP and to an augmentation of skin carcinogenesis by 7,12-dimethylbenz[a]anthracene (DMBA). These results clearly show that 9-OHE induces the biosynthesis of cytochrome P-450 which markedly stimulates the mutagenic and carcinogenic potentialities of polycyclic aromatic hydrocarbons (PAH).  相似文献   

5.
The in vivo formation of benzo[alpha]pyrene (BP) metabolite-DNA adducts in several tissues of mice and rabbits was examined. Included were tissues with widely divergent xenobiotic metabolizing capabilities such as liver and brain. The major adduct identified in each tissue was the (+)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydro-BP (BPDEI)-deoxyguanosine adduct. A 7 beta,8 alpha-dihydroxy-9 beta,10 beta-epoxy-7,8,9,10-tetrahydro-BP (BPDEII)-deoxyguanosine adduct, a (-)-BPDEI-deoxyguanosine adduct and an unidentified adduct were also observed. These adducts were present in all of the tissues of the mice and in the lungs of the rabbits; only BPDEI and BPDEII were seen in the rest of the rabbit tissues. In all of the tissues studied, the DNA adduct levels were unexpectedly similar. For example, the BPDEI-DNA adduct levels in muscle and brain of mice were approx. 50% of those in lung and liver at each oral BP dose examined. After an i.v. dose of BP in rabbits, the BPDEI adduct levels in lung were three times those in brain or liver and twice those in muscle. The binding of BP metabolites to protein was also determined in these tissues. The tissue-to-tissue variation in protein binding levels of BP metabolites was greater than that for BPDEI-DNA adducts. There are several possible explanations for the in vivo binding of BP metabolites to DNA and protein of various tissues. First, oxidative metabolism of BP in each of the examined tissues might account for the observed binding. Second, reactive metabolites could be formed in tissues such as liver and lung and be transported to cells in tissues such as muscle and brain where they bind to DNA and protein. In any case, the tissue-to-tissue variations in protein and DNA binding of BP-derived radioactivity do not correlate with differences in cytochrome P-450 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号