首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SYNOPSIS. Low concentrations of chlorpromazine (~0.01 mM) inhibit growth and nucleic acid synthesis in the ciliate Tetrahymena pyriformis. Brief exposure of the cells to, e.g. 0.018 mM chlorpromazine, had very little effect on 14CO2 production or on label incorporation into glycogen from [1-14C]glucetate, [6–14C]glucose, or [1-14C]leucine, but 17-h exposure of stationary phase cultures to this drug caused marked alterations in metabolism, including an almost complete loss of ability to decarboxylate L-[1-14C]leucine and L-[1-14C]tyrosine. It was shown that loss of ability to decarboxylate these amino acids results from loss of ability to transport them.  相似文献   

2.
Amino acid starvation causes an adaptive increase in the initial rate of transport of selected neutral amino acids in an established line of rat hepatoma cells in tissue culture. After a lag of 30 min, the initial rate of transport of alpha-aminoisobutyric acid (AIB) increases to a maximum after 4 to 6 h starvation of 2 to 3 times that seen in control cells. The increased rate of transport is accompanied by an increase in the Vmax and a modest decrease in the Km for this transport system, and is reversed by readdition of amino acids. The enhancement is specific for amino acids transported by the A or alanine-preferring system (AIB, glycine, proline); uptake of amino acids transported by the L or leucine-preferring system (threonine, phenylalanine, tyrosine, leucine) or the Ly+ system for dibasci amino acids (lysine) is decreased under these conditions. Amino acids which compete with AIB for transport also prevent the starvation-induced increase in AIB transport; amino acids which do not compete fail to prevent the enhancement. Paradoxically threonine, phenylalanine, tryptophan, and tyrosine, which do not compete with AIB for transport, block the enhancement of transport upon amino acid starvation. The starvation-induced enhancement of amino acid transport does not appear to be the result of a release from transinhibition. After 30 min of amino acid starvation, AIB transport is either unchanged or slightly decreased even though amino acid pools are already depleted. Furthermore, loading cells with high concentrations of a single amino acid following a period of amino acid starvation fails to prevent the enhancement of AIB transport, whereas incubation of the cells with the single amino acid for the entire duration of amino acid starvation prevents the enhancement; intracellular amino acid pools are similar under both conditions. The enhancement of amino acid transport requires concomitant RNA and protein synthesis, consistent with the view that the adaptive increase reflects an increased amount of a rate-limiting protein involved in the transport process. Dexamethasone, which dramatically inhibits AIB transport in cells incubated in amino acid-containing medium, both blocks the starvation-induced increase in AIB transport, and causes a time-dependent decrease in transport velocity in cells whose transport has previously been enhanced by starvation.  相似文献   

3.
Entry of certain free amino acids (alpha aminoisobutyric acid (AIB), alanine and proline), but not of leucine into rat thymic lymphocytes increased progressively when the cells were incubated in amino acid deficient medium. Actinomycin D, cycloheximide, or a high concentration of AIB abolished the time-related increase in AIB accumulation, whereas exposure to a high concentration of leucine had no effect. This phenomenon could not be attributed to a progressive alteration in the nature of the incubation medium nor to reduced transinhibition of AIB uptake. The exodus of AIB also increased with time, but to a smaller degree than AIB entry. Initial rates of AIB entry and exodus increased with increases in the pH of the incubation medium over the range 6.5-8.0. The effects of pH on entry and exodus were time-related, increasing progressively oveb nullified the magnified time related increments in AIB transport caused by prolonged incubation at pH 8.0. The influence of a given pH on transport of AIB decreased rapidly when the cells were transferred to medium of another pH, but this tendency diminished the longer the cells were exposed to the initial pH. pH influenced the entry of alanine and proline in the same fashion as that of AIB, but did not affect leucine entry. These results indicate that thymic lymphocytes exhibit adaptive enhancement in the accumulation of free amino acids that are transported largley by the A or alanine-preferring system, and that the adaptive process involves both entry and exodus. Moreover, alterations in pH modify entry and exodus of these same amino acids, profoundly affect the magnitude of time-released increases, and may induce fundamental changes in the mechanism(s) serving amino acid transport.  相似文献   

4.
Tyrosine countertransport was used to demonstrate the hormonal stimulation of neutral amino acid transport across the lysosomal membrane of FRTL-5 cells. Cells grown with thyrotropin (1 X 10(-10) M) had 7-fold (+/- S.E.) higher tyrosine countertransport activity in their lysosomes than cells grown without thyrotropin. Thyrotropin also stimulated the uptake into tyrosine-loaded lysosomes of other neutral amino acids recognized by the tyrosine carrier, namely, phenylalanine (3-fold) and leucine (6-fold). In contrast lysosomal cystine countertransport was not affected by thyrotropin. Addition of thyrotropin to cells grown without thyrotropin showed that the stimulation of tyrosine counter-transport (a) required at least 48 h to reach the level of the thyrotropin-supplemented cells, (b) depended upon protein synthesis, since cycloheximide (20 microM) was inhibitory, and (c) depended upon RNA synthesis, since actinomycin D (1 nM) was inhibitory. Cells grown without thyrotropin but with dibutyryl cyclic AMP (1 mM) or cholera toxin (1 nM) exhibited enhanced lysosomal countertransport of tyrosine, suggesting that cyclic AMP may act as a messenger. This represents the first demonstration of hormonal responsiveness in a lysosomal transport system and may reflect the importance of salvage and reutilization of lysosomal degradation products for the thyroid epithelial cell.  相似文献   

5.
Growth factors, mitogens, and malignant transformation can alter the rate of amino acid uptake in mammalian cells. It has been suggested that the effects of these stimuli on proliferation are mediated by activation of Na+/H+ exchange. In lymphocytes, Na+/H+ exchange can also be activated by phorbol esters and by hypertonic media. To determine the relationship between the cation antiport and amino acid transport, we tested the effects of these agents on the uptake of alpha-aminoisobutyric acid (AIB), methyl-AIB, proline, and leucine in rat thymocytes. Both 12-O-tetradecanoylphorbol-13-acetate (TPA) and hypertonicity stimulated amino acid uptake through system A (AIB, proline, and methyl-AIB). In addition, TPA, but not hypertonicity, also elevated leucine uptake. The stimulation of the Na+ -dependent system A was not due to an increased inward electrochemical Na+ gradient. The effects of TPA and hypertonic treatment were not identical: Stimulation of AIB uptake by TPA was observed within minutes, whereas at least 1 hr was required for the effect of hypertonicity to become noticeable. Moreover, stimulation by hypertonicity but not that by TPA, was partially inhibited by cycloheximide, suggesting a role of protein synthesis. That stimulation of Na+/H+ exchange does not mediate the effects on amino acid transport is suggested by two findings: 1) the stimulation of AIB uptake was not prevented by concentrations of amiloride or of 5-(N,N-disubstituted) amiloride analogs that completely inhibit the Na+/H+ antiport and 2) conditions that mimic the effect of the antiport, namely, increasing [Na+]i or raising pHi failed to stimulate amino acid uptake. Thus, in lymphocytes, activation of Na+/H+ exchange and stimulation of amino acid transport are not casually related.  相似文献   

6.
Neutral amino acid transport was characterized in human synovial cells. The amino acids tested are transported by all three major neutral amino acid transport systems, that is, A, L, and ASC. The model amino acid 2-aminoisobutyric acid (AIB) was found to be a strong specific substrate for system A in synovial cells. When cells were starved of amino acids, the activity of AIB transport increased, reaching a maximum within 1 h. The stimulation of transport activity was not blocked by cycloheximide and would thus appear to be related to a release from transinhibition. Similarly, the decrease in the activity of AIB transport observed after the addition of alpha-methyl-aminoisobutyric acid (meAIB) appeared to be related to transinhibition. However, using a different approach, that is, amino acid starvation followed by incubation with 10 mM meAIB and transfer to an amino acid-free medium with or without cycloheximide supplementation, a clear increase in AIB uptake, due both to derepression and a release from transinhibition, was observed. Unlike human fibroblasts, the depression of system A in these synovial cells was not serum-dependent. The process of derepression was observed only after preloading with meAIB. Neither AIB nor alanine produced this phenomenon. Moreover, alanine preloading led to a large increase in AIB transport activity due to a release from transinhibition. These observations indicate that the process of derepression and release from transinhibition are specific to the substrates present in the culture medium prior to amino acid starvation.  相似文献   

7.
ABSTRACT Leishmania donovani promastigotes were grown to late log phase, washed and resuspended in iso-osmotic buffer containing L-arginine, and the rate of urea formation was then measured under various conditions. Addition of glucose or mannose activated urea formation, whereas 2-deoxyglucose inhibited and 6-deoxyglucose had no effect. Addition of alanine or of α -aminoisobutyrate inhibited urea formation, alanine causing a greater inhibition than α -aminoisobutyrate. Addition of leucine, proline, glycine, or lysine had no effect on urea formation. The presence of glutamate also increased the rate of urea formation from arginine, but to a lesser extent than did glucose. The presence of both glucose and alanine caused no net change in urea formation, whereas the inhibitory effect of alanine exceeded the activating effect of glutamate, so that a small inhibition in the rate of urea formation occurred in the presence of both alanine and glutamate. Cells grown to 3-day stationary phase had a markedly reduced rate of arginine catabolism to urea, but the activating effect of glucose and the inhibitory effect of alanine were qualitatively similar to their effects on late log phase cells. Addition of water to cells suspended in buffer also inhibited urea formation, but this appeared to be due primarily to the release of alanine caused by the hypo-osmotic stress. Addition of mannitol to cells suspended in buffer caused a small inhibition of arginine catabolism. Addition of dibutyrylcyclic AMP, 3',5'-cyclic GMP, phorbol myristic acid, or A23187 had no effect on the rate of urea formation from arginine. It is suggested that the effects of glucose and 2-deoxyglucose on arginine catabolism depend largely upon the nature of their metabolites, whereas the effects of the various amino acids examined depend largely on the extent to which they interfere with or enhance arginine transport into the cells.  相似文献   

8.
9.
Treatment of bovine lymphocytes isolated from animals which were either infected with Mycobacterium bovis or sensitized to a purified protein derivative (PPD-B) from this organism induced an increase in the transport of α-aminoisobutyric acid (AIB) and α-methylaminoisobutyric acid (MeAIB). PPD-B did not stimulate these transport activities in lymphocytes from nonsensitized animals. The transport stimulation was first measurable after about 7 hours of treatment, reached about a two-fold enhancement after 20 hours, and continued to increase to 30- to 40-fold after 6 days. The stimulation of AIB transport was inhibited by both ouabain and cycloheximide. Experiments to determine transport system specificities in nonstimulated lymphocytes showed that MeAIB transport was primarily by the Na+-dependent, A-system, and leucine transport was mostly by Na+-independent system(s). In contrast, AIB transport was about 25% by the A-system, 25% by at least one Na+-dependent, non-A-system, and 50% by one or more Na+-independent system(s). Analysis of the three components of AIB transport after treatment with PPD-B showed that: (1) transport by both the A-system and the Na+-independent system(s) was stimulated; (2) A-system transport was stimulated to a larger extent than Na+-independent transport; and (3) Na+-dependent, non-A-system transport was not stimulated significantly.  相似文献   

10.
Glucagon and cAMP analogs stimulate amino acid transport in freshly isolated hepatocytes by inducing the synthesis of new transport proteins. The role of the cell nucleus in the glucagon regulation of amino acid transport has been studied in rat hepatocytes enucleated by centrifugation through a discontinuous Ficoll gradient in the presence of cytochalasin B. Enucleated hepatocytes take up alpha-aminoisobutyric acid (AIB) through a Na+-dependent transport component with kinetic properties similar to those found in intact hepatocytes. Cytoplasts prepared from glucagon-stimulated cells retain the increase AIB transport induced by the hormone in the intact cells. The direct addition of glucagon to cytoplasts has no effect on AIB transport, in spite of the fact that the cytoplasts exhibit a higher capacity to bind glucagon than their nucleated counterparts. These data indicate that the nucleus is required for the glucagon stimulation of amino acid transport in isolated hepatocytes.  相似文献   

11.
The effects of insulin, glucagon or Dexamethasone (DEX) and of glucagon with insulin or DEX were examined on the uptake of 2-amino [1-14C]isobutyric acid (AIB) and N-Methyl-2-amino [1-14C]isobutyric acid (NMe AIB) in monolayer cultures of rat hepatocytes. Insulin and glucagon stimulated the uptake of both the amino acids and DEX inhibited it, showing that all three of these hormones regulate the A system (the sodium-dependent system that permits the transport of NMe AIB) for amino acid transport in these cultures. Experiments investigating the transport of aminocyclopentane-1-carboxylic acid, 1- [carboxyl-14C] in the presence of excess AIB or in the absence of sodium showed that insulin had no effect on the activity of the L system (the sodium-independent system that prefers leucine). Experiments on the uptake of AIB in the presence of excess NMe AIB showed insulin had no effect on the transport activity of the ASC system (the sodium-dependent system that does not transport NEe AIB). Insulin concentrations ranging from 0.1 nM to 100 nM did not antagonize the stimulatory effect of optimum or suboptimum concentrations of glucagon on the uptake of either AIB or NMe AIB. Similarly, glucagon did not antagonize the stimulatory effect of optimum or suboptimum concentrations of insulin on the uptake of both the amino acids. The combined effect of insulin and glucagon was additive on the rate as well as the cumulative uptake of both AIB and NMe AIB. DEX alone inhibited the transport of both AIB and NMe AIB by about 25%, while glucagon caused a 2–3-fold increase; however, the addition of glucagon to cultures containing DEX caused a 7–8-fold increase in the uptake of both AIB and NMe AIB when compared to cultures containing DEX alone. The effect of insulin on the levels of cAMP was also investigated. Insulin had no effect on the cAMP levels in cultures treated or untreated with optimum or suboptimum concentrations of glucagon.  相似文献   

12.
13.
The action of L-triiodothyronine (T3) on amino acid transport in the GC clonal strain of rat pituitary cells was investigated by measurement of the uptake of the nonmetabolizable amino acid, alpha-aminoisobutyric acid (AIB). The uptake of AIB by GC cells appeared to require energy and Na+ and displayed Michaelis-Menten kinetics. In comparison to cultures maintained in the absence of T3, T3 addition resulted in an increase in AIB uptake which seemed due to an increase in the initial rate of AIB transport. T3 addition resulted in increased AIB accumulation at later time points as well. T3 induction of AIB transport did not occur until 3.5 h after addition of T3, and this effect was blocked by cycloheximide. Maximal induction occurred 48 to 72 h later. One-half maximal induction occurred 24 to 48 h after addition of T3. No detectable changes either in AIB uptake or intracellular water space, measured by uptake of the nonmetabolizable sugar, 3-O-methyl-D-glucose, were noted for the first 120 min after addition of T3. Induction of AIB transport occurred at 0.05 nM T3 (total medium concentration) and one-half maximal induction occurred at 0.17 nM T3. The relative potencies of four iodothyronine analogues for AIB transport were in accord with their reported activities in nuclear T3 receptor binding assays. These data suggest that induction of AIB transport by T3 may be mediated by the nuclear T3 receptor and may reflect the pleiotrophic response of GC cells to thyroid hormone.  相似文献   

14.
Experiments have been conducted in which glucagon-induced stimulation of α-aminoisobutyric acid (AIB) transport in rat liver, presumably mediated by cyclic AMP, was markedly inhibited by actinomycin D, cycloheximide or puromycin. Inhibition of transport occurred despite the presence of high concentrations of cyclic AMP, suggesting that the nucleotide may act prior to, or at the same point as, the antibiotics. Kinetic studies showed that 1) the half-life of the glucagon-stimulated system(s) was less than 1 hour, and 2) glucagon treatment doubled Vmax without having any effect on the apparent Km for hepatic AIB transport. The results suggest that glucagon stimulates hepatic AIB transport by increasing the synthesis of some critical protein having a rapid turnover rate; this effect may be due to a prior increase in RNA synthesis.  相似文献   

15.
The uptake of various amino acids into Streptomyces hydrogenans grown in chemostatically and turbidostatically controlled steady state cultures has been investigated. A close correlation between transport capacity and the growth rates of the cells was found. As shown by kinetic analysis, the increased transport is due to elevated maximum uptake rates, the apparent Michaelis constants remaining unchanged. Analysis of the unidirectional fluxes of cycloleucine revealed that not only the influx is raised as the growth rate is increased but also the efflux. Hence, the conclusion is drawn that the growth-rate dependent modulation of transport capacity is, at least, partially due to the variation of the concentration of active transport components. Since the cells were grown in the absence of external amino acids the results suggest that amino acid transport into S. hydrogenans is under the control of endogenous effectors.List of Abbreviations AIB 2-aminoisobutyric acid - Cycloleucine 1-aminocyclopentane-1-carboxylic acid  相似文献   

16.
The rBAT protein, when expressed in Xenopus oocytes, was previously shown to reproduce the selectivity of the Na+-independent neutral and basic amino acid transport system called bo,+. More recently, the capacity of rBAT to generate a transmembrane current was demonstrated when addition of neutral amino acids stimulated the efflux of cations (presumably basic amino acids) in rBAT-injected oocytes. In the present paper, aminoisobutyric acid (AIB), a neutral amino acid analogue, was shown to induce outward currents (efflux of basic amino acids) through rBAT similar to those caused by alanine in terms of affinity, maximal currents and I-V curves. Despite generating similar currents, the AIB transport rate was more than 30 times lower than that of alanine, thus challenging the assumption that rBAT functions as a classical exchanger. Experiments using a cut-open oocyte voltage clamp demonstrated that AIB was capable of stimulating rBAT-mediated currents from either side of the membrane. AIB, like alanine, was able to stimulate the efflux of radiolabeled alanine and arginine while no rBAT-mediated efflux was measurable in the absence of external rBAT substrates. These results demonstrate that (i) the presence of amino acids is required on both sides of the membrane for rBAT to mediate amino acid flux and thus rBAT must be some type of exchanger but (ii) rBAT-mediated amino acid influx is not stoichiometrically related to the efflux. A model of a ``double gated pore' is proposed to account for these properties of rBAT, which contravene standard models of exchangers and other transporters. Received: 15 June 1995/Revised: 21 September 1995  相似文献   

17.
We studied the uptake of leucine, phenylalanine, and the amino acid analog, 2-aminonorborane-2-carboxylic acid, by rat hepatoma cells in tissue culture. The uptake of these amino acids was partially mediated by a plasma membrane transport system similar to the L agency described in other cell types in that it does not require extracellular sodium and is subject to trans-stimulation. Initial rates of sodium-independent transport of these amino acids were calculated using mathematical transformations of the uptake time course curves. The glucocorticoid dexamethasone inhibits the activity of this transport system; the initial rates of sodium-independent uptake of leucine, phenylalanine, and 2-aminonorborane-2-carboxylic acid are decreased by approximately one-third (average = 30%, n = 19) after incubation of HTC cells with 0.1 microM dexamethasone. This inhibition requires at least 15 h, reaching a maximum at 24 h of exposure of the cells to the hormone. Dexamethasone has an asymmetrical effect on sodium-independent amino acid transport in that exposure of the cells to the hormone does not inhibit the rates of outflow of leucine or phenylalanine from preloaded cells into medium without sodium. Inhibition of uptake is blocked by 0.1 mM cycloheximide and 4 microM actinomycin D, indicating the need for continuous protein synthesis for dexamethasone action. Insulin, which is known to partially reverse the inhibitory effect of dexamethasone on the A amino acid transport system in HTC cells, does not alter the action of dexamethasone on the L system. Previous investigations have demonstrated inhibition by dexamethasone of at least two distinct sodium-dependent amino acid transport activities in HTC cells. The data presented here, showing inhibition by the glucocorticoid of a sodium-independent transport activity, indicate that the effect of the hormone is independent of the energy source of the amino acid transport systems affected.  相似文献   

18.
The active uptake of 2-aminoisobutyric acid (AIB) and several other amino acids in resting cells of Streptomyces hydrogenans was found to be stimulated by exogenously added adenosine cyclic monophosphate (cAMP). The uptake of glycerol, sorbose, and pyrimidine nucleosides remained unaffected. Among the various cAMP derivatives tested, the dibutyryl derivative was found to be most effective, followed by monobutyryl cAMP, and cAMP. Dibutyryl cGMP was also found to stimulate AIB transport, and its effectivity was as good as that of dibutyryl cAMP. The effect of dibutyryl cAMP is time dependent and attains its maximum after 40–60 min of incubation at 30°C in K-Na-phosphate buffer. Dibutyryl cAMP-dependent transport stimulation has a high temperature coefficient and is prevented by rifamycin SV or chloramphenicol. The rate of leucine incorporation into protein was rapidly increased upon addition of dibutyryl cAMP. Kinetic studies reveal that the stimulation of AIB transport is characterized by an increase in maximum uptake rate and an unaltered apparent Michaelis constant. Analysis of the unidirectional fluxes show that both influx and efflux are enhanced by dibutyryl cAMP. It is concluded that exogenous dibutyryl cAMP stimulates de novo synthesis of certain protein including the transport catalysts for various amino acids.  相似文献   

19.
Cultured pig kidney cells designated LLC-PK1, previously shown to acquire Na+-dependent concentrative transport of hexoses as the cells become growth arrested, also show Na+-dependent concentrative uptake of the amino acid analogs alpha-aminoisobutyric acid (AIB) and (methyl) meAIB. This A system-like transport is most active in sparse, growing cultures and becomes stepped down at confluence. The cell/medium equilibrium distribution ratio of the lipophilic cation tetraphenylphosphonium ion (TPP+) decreases in parallel fashion, suggesting that a decrease in membrane potential may be a major factor in the stepdown. Differentiation inducers (hexamethylene bisacetamide) and phosphodiesterase inhibitors (theophylline, methylisobutyl xanthine) accelerate the stepdown, but even in the presence of these compounds addition of the tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) results in the maintenance of a high level of AIB and meAIB uptake. In all these respects the changes in A system-like amino acid transport are the reciprocal of those seen for concentrative hexose transport, although the driving force appears to be the same for both systems. The TPA analogs phorbol and 4-0-methyl TPA which are inactive in tumor promotion are inactive in this system as well. In confluent, already stepped-down cultures, addition of TPA leads to a rapid (2-6 hour) stimulation of AIB and meAIB uptake. The enhancement is sensitive to cycloheximide and actinomycin D. The ouabain-sensitive fraction of meAIB uptake is not markedly changed in the TPA-enhanced uptake, nor is the TPP+ distribution ratio elevated in TPA-treated cells, making it unlikely that the TPA effect is through an alteration in the membrane potential.  相似文献   

20.
Hypoxia and amino acid deprivation downregulate expression of extracellular matrix genes in lung fibroblasts. We examined the effect of hypoxia on amino acid uptake and protein formation in human lung fibroblasts. Low O(2) tension (0% O(2)) suppressed incorporation of [(3)H]proline into type I collagen without affecting [(35)S]methionine labeling of other proteins. Initial decreases in intracellular [(3)H]proline incorporation occurred after 2 h of exposure to 0% O(2), with maximal suppression of intracellular [(3)H]proline levels at 6 h of treatment. Hypoxia significantly inhibited the uptake of radiolabeled proline, 2-aminoisobutyric acid (AIB), and 2-(methylamino)isobutyric acid (methyl-AIB) while inducing minor decreases in leucine transport. Neither cycloheximide nor indomethacin abrogated hypoxia-related suppression of methyl-AIB uptake. Efflux studies demonstrated that hypoxia inhibited methyl-AIB transport in a bidirectional fashion. The downregulation of amino acid transport was not due to a toxic effect; function recovered on return to standard O(2) conditions. Kinetic analysis of AIB transport revealed a 10-fold increase in K(m) accompanied by a small increase in maximal transport velocity among cells exposed to 0% O(2). These data indicate that low O(2) tension regulates the system A transporter by decreasing transporter substrate affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号