首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human SH-SY5Y neuroblastoma cells could be induced to differentiate morphologically and biochemically in the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA), retinoic acid (RA), or a combination of these two substances. The phenotypical changes induced by these substances differed, but one effect of both was an inhibition of the cell growth. Addition of TPA or RA to non-treated cells had no effect on the activation of ornithine decarboxylase (ODC, EC 4.1.1.17.), while a change to fresh medium stimulated the ODC to maximum activity after 4-6 h. The activity was not altered by the presence of RA in the fresh medium, but TPA partially inhibited the medium-stimulated ODC activity. Cells treated for 4 or 8 days with TPA or a combination of TPA and RA had a low ODC activity which could not be induced by fresh medium. However, RA-treated (and thus growth-inhibited) cells still responded to a change of medium by exhibiting an ODC activity of the same magnitude and duration as in medium-stimulated control cells. The results seem to suggest that the growth inhibition induced by TPA and RA, respectively, is mediated by different mechanisms.  相似文献   

2.
3.
4.
Clostridiumhistolyticum collagenase has been chemically modified with a series of reagents to identify essential amino acid residues. The activity of the enzyme is not significantly altered by the seryl reagents diisopropylfluorophosphate and phenylmethylsulfonyl fluoride, the cysteinyl reagents p-chloromercuribenzoate and iodoacetamide, or the arginyl reagents butanedione and phenylglyoxal. The enzyme is inactivated by 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide and N-ethyl-5-phenylisoxazolium-3′-sulfonate, indicating the presence of an essential carboxyl residue. Both acetylimidazole and tetranitromethane inactivate the enzyme and the acetylimidazole reaction is reversed by hydroxylamine, indicating that collagenase contains an essential tyrosyl residue. In addition, acylation of the enzyme by diethylpyrocarbonate, diketene and acetic anhydride markedly lowers activity, which cannot be restored by hydroxylamine. This indicates that collagenase contains an essential lysyl residue, a conclusion supported by the fact that trinitrobenzene sulfonate also inactivates the enzyme.  相似文献   

5.
Ornithine decarboxylase activity and polyamine levels were determined at various growth phases of Tetrahymena thermophila cultures. Enzyme activity and intracellular polyamines increased in exponentially growing cells and peaked just before the stationary phase. Putrescine was the predominant polyamine and spermidine and spermine concentrations were low throughout. The increase in putrescine level can be totally accounted for by the enzyme activity detected, provided that there is an ample supply of the precursor, L-ornithine.  相似文献   

6.
An 18 kDa protein can be metabolically labeled by [3H]putrescine or [3H]spermidine in various mammalian cells. The labeling is due to a post-translational modification of one lysine residue to hypusine using the aminobutyl moiety derived from spermidine. In view of the lack of knowledge of the function of this spermidine-modified protein, we decided to use the radioactivity associated with the [3H]spermidine-labeled 18 kDa protein as a tracer to develop a simple procedure for purifying this protein from cultured cells. We first screened more than 15 different affinity adsorbents for their ability to bind the labeled 18 kDa protein. This approach enabled us to develop a four-step procedure to purify the labeled 18 kDa protein from NB-15 mouse neuroblastoma cells. The procedure, including a Cibacron Blue column, an omega-aminooctyl-agarose, a Sepharose G-50, and a Mono Q column, resulted in an 800-fold purification of the labeled 18 kDa protein. Two-dimensional gel analysis of fractions enriched in the labeled 18 kDa protein revealed (i) the presence of isoforms of hypusine-containing 18 kDa protein, with pI values ranging from 4.7 to 5.2, and (ii) the presence of an additional labeled protein with an apparent molecular mass of 22 kDa and a pI value of 5.0. The labeling intensity of the 22 kDa protein, however, was less than 5% of that of the 18 kDa protein. Peptide map analysis, using the V-8 proteinase digestion method, indicated that the 18 kDa hypusine-containing protein obtained from NB-15 cells was similar to eukaryotic initiation factor 4D isolated from rabbit reticulocytes.  相似文献   

7.
Unlike other eukaryotes, which can synthesize polyamines only from ornithine, plants possess an additional pathway from arginine. Occasionally non-enzymatic decarboxylation of ornithine could be detected in Arabidopsis extracts; however, we could not detect ornithine decarboxylase (ODC; EC 4. 1.1.17) enzymatic activity or any activity inhibitory to the ODC assay. There are no intact or degraded ODC sequences in the Arabidopsis genome and no ODC expressed sequence tags. Arabidopsis is therefore the only plant and one of only two eukaryotic organisms (the other being the protozoan Trypanosoma cruzi) that have been demonstrated to lack ODC activity. As ODC is a key enzyme in polyamine biosynthesis, Arabidopsis is reliant on the additional arginine decarboxylase (ADC; EC 4.1.1.9) pathway, found only in plants and some bacteria, to synthesize putrescine. By using site-directed mutants of the Arabidopsis ADC1 and heterologous expression in yeast, we show that ADC, like ODC, is a head-to-tail homodimer with two active sites acting in trans across the interface of the dimer. Amino acids K136 and C524 of Arabidopsis ADC1 are essential for activity and participate in separate active sites. Maximal activity of Arabidopsis ADC1 in yeast requires the presence of general protease genes, and it is likely that dimer formation precedes proteolytic processing of the ADC pre-protein monomer.  相似文献   

8.
The biological activity of selenium is known to depend on its chemical form. In this study, eight forms of selenium that differed in oxidation state or degree of methylation were studied for their acute effects on the activities of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMet DC) and on the concentrations of the polyamines putrescine, spermidine, and spermine in the liver. The polyamine pathway was studied because it is involved in the control of cell growth and in the cell's response to trophic, carcinogenic, and toxic stimuli, activities that selenium has been reported to affect. Female Sprague Dawley rats were administered 12 mumol Se/kg body weight via intraperitoneal injection and were sacrificed six hours later. Injection of sodium selenate, sodium selenite, selenomethionine, Se-methylselenocysteine, selenobetaine, and selenobetaine methyl ester resulted in significant increases in liver selenium, whereas injection of dimethylselenoxide and trimethylselenonium chloride did not. ODC activity and AdoMet DC activity were induced by those selenium compounds that also increased liver selenium content, but the magnitude of enzyme induction by those compounds was not correlated with the hepatic concentration of total selenium determined fluorometrically. Furthermore, the induction of ODC activity by the various forms of selenium did not result in concomitant increases in putrescine, spermidine, and spermine except in the case of selenite. Given that alterations in the metabolism of selenium are induced when the level of tissue selenium is elevated and that the relative abundance of various selenometabolites can be affected by the point of entry of selenium into intermediary metabolism, these data suggest that the changes that were observed in enzyme activities and polyamine levels are likely to be associated with the accumulation of a specific metabolite of selenium. The relevance of these findings to elucidation of the biological activities attributable to various forms of selenium is under investigation.  相似文献   

9.
10.
Flavins in different compartments of effective nodules fromGlycine max cv Maple Arrow xBradyrhizobium japonicum strains were studied by spectrophotometry and chromatographic techniques. Flavins in the peribacteroid space were riboflavin (80%) and FMN (20%), as identified by TLC and HPLC. Flavin concentrations in the soybean root nodule cytoplasm, in the symbiosome space (PBS) and in the cytosol of bacteroids were monitored between 20 and 40 days post infection (d.p.i.) Between the 20th and 29th d.p.i. an at least four times higher flavin/protein ratio was found in PBS of effective nodules compared with the nodule cytoplasm. Between nitrogenase activity in the free-living state and bacterial flavin accumulation, no correlation could be observed. Flavin accumulation is not restricted to an effective symbiosis, as indicated by the analysis of ineffective nodules with strainB. japonicum RH-31 Marburg. Flavin accumulation is absent in uninfected soybean root tissue and in free-living rhizobia, thus indicating that flavin accumulation is a result of symbiotic interaction. Flavin accumulation is also missing in nodules with a hypersensitive response against the bacteria.  相似文献   

11.
A transitory increase in ornithine decarboxylase (ODC) activity is shown not to be a prerequisite for the differentiation induced by hexamethylene bisacetamide (HMBA) in murine erythroleukemic (MEL) cells. On the contrary, conditions are described, where inhibition of the ODC activity with alpha-difluoromethyl ornithine (DFMO) stimulated the induced differentiation. Polyamine analysis demonstrated that a reduction in intracellular putrescine and spermidine occurred in MEL cells before commitment to erythrodifferentiation. The presence of DFMO increased the rapidity and the amplitude of these changes. No effect of dexamethasone on these changes in ODC activity or intracellular polyamines was observed.  相似文献   

12.
Plasma membranes prepared from clonal NB-15 mouse neuroblastoma cells were sequentially incubated with 125I-labeled insulin (10 nM) and the bifunctional cross-linking agent disuccinimidyl suberate. This treatment resulted in the cross-linking of 125I-labeled insulin to a polypeptide that gave an apparent Mr of 135 000 on a sodium dodecyl sulfate-polyacrylamide gel electrophoresed in the presence of 10% β-mercaptoethanol. Affinity labeling of this polypeptide was inhibited by the presence of 5 μM unlabeled insulin, but not by 1 μM unlabeled nerve growth factor. Using the same affinity labeling technique, 125I-labeled nerve growth factor (1 nM) did not label any polypeptide appreciably in the plasma membranes of NB-15 cells but labeled an Mr 145 000 and an Mr 115 000 species in PC-12 rat pheochromocytoma cells. The number of insulin binding sites per cell in the intact differentiated NB-15 mouse neuroblastoma cells was approx. 6-fold greater than that in the undifferentiated NB-15 mouse neuroblastoma cells as measured by specific binding assay, suggesting an increase of the number of insulin receptors in NB-15 mouse neuroblastoma cells during differentiation.  相似文献   

13.
Plasma membranes prepared from clonal NB-15 mouse neuroblastoma cells were sequentially incubated with 125I-labeled insulin (10 nM) and the bifunctional cross-linking agent disuccinimidyl suberate. This treatment resulted in the cross-linking of 125I-labeled insulin to a polypeptide that gave an apparent Mr of 135 000 on a sodium dodecyl sulfate-polyacrylamide gel electrophoresed in the presence of 10% beta-mercaptoethanol. Affinity labeling of this polypeptide was inhibited by the presence of 5 microM unlabeled insulin, but not by 1 microM unlabeled nerve growth factor. Using the same affinity labeling technique, 125I-labeled nerve growth factor (1 nM) did not label any polypeptide appreciably in the plasma membranes of NB-15 cells but labeled an Mr 145 000 and an Mr 115 000 species in PC-12 rat pheochromocytoma cells. The number of insulin binding sites per cell in the intact differentiated NB-15 mouse neuroblastoma cells was approx. 6-fold greater than that in the undifferentiated NB-15 mouse neuroblastoma cells as measured by specific binding assay, suggesting an increase of the number of insulin receptors in NB-15 mouse neuroblastoma cells during differentiation.  相似文献   

14.
Subcutaneous transplantation of coarse powders of demineralized rat diaphyseal bone matrix into allogeneic recipients results in new bone formation. The changes in ornithine decarboxylase activity during such bone matrix-induced sequential differentiation of cartilage, bone and bone marrow were investigated. There was a peak in ornithine decarboxylase activity on day 3 corresponding to the appearance of fibroblasts in close contiguity to the bone matrix. This was followed by another peak of enzyme activity on day 8 which was correlated with the onset of proliferation of presumptive osteoblasts and vascular endothelial cells. The peak of ornithine decarboxylase activity on day 3 appears to be a demineralized bone matrix-specific event. Induction of ornithine decarboxylase activity represents one of the early responses to implanted bone matrix.  相似文献   

15.
Induction of ornithine decarboxylase has been correlated with the onset of cellular proliferation and cAMP production. Whether the resulting increases in polyamine levels are essential mediators of growth and/or differentiation or are merely incidental remains controversial. We have used FRTL-5 thyroid cells in culture to study the effects of three growth factors on ornithine decarboxylase activity. These factors [TSH, bovine calf serum, and 12-O-tetradecanoylphorbol-13-acetate (TPA)] are thought to act through different intracellular pathways. TSH stimulates cAMP production in thyroid cells, calf serum acts through ill-defined pathways to stimulate growth, and TPA is known to activate protein kinase C. Bovine calf serum and TSH acted synergistically to induce ornithine decarboxylase activity. Activity was maximal when the phosphodiesterase inhibitor, methyl isobutyl xanthine, was included. Individually, neither serum nor TSH was a potent stimulator of the enzyme. Ornithine decarboxylase mRNA was apparent on Northern blots as a doublet following one hour of exposure to these agents. TPA did not stimulate ornithine decarboxylase activity and had an inhibitory effect on enzyme induction by TSH and serum. Difluoromethylornithine, a specific inhibitor of ornithine decarboxylase, inhibited growth induced by both TPA and TSH in putrescine-free medium. This effect was not apparent in medium containing 10(-5) M putrescine. The data indicate that, although intracellular levels of cyclic AMP regulate ornithine decarboxylase activity, a component in serum is necessary for significant induction of this enzyme. Factors stimulating growth by non-cyclic AMP-dependent pathways may act without apparently stimulating this enzyme, although polyamines appear to be essential for their growth stimulatory effects.  相似文献   

16.
U R Tipnis  C Skiera 《Cytobios》1989,57(229):101-108
Ornithine decarboxylase activities (ODC) and polyamine levels were determined in five cardiac regions of the rat heart, following daily administration of 1 mg/kg of thyroxine, in the right and left atria, the right and left ventricles and the septum. The thyroxine stimulated ODC activity in all five regions of the heart. Enzyme activity in the left atrium and the septum peaked a day earlier than in other regions and the decline of ODC activity was slower. Putrescine in control animals was present in all regions except the right atrium, where its content was below detectable levels. Following the administration of thyroxine, the putrescine content of the left atrium, the right ventricle and the septum declined, while spermidine and spermine levels remained unchanged. In direct contrast to the other regions of the heart, thyroxine stimulated an increase in polyamines, as well as in weight which occurred exclusively in the left ventricle. These findings suggest a causal relationship between increased polyamines and hypertrophy.  相似文献   

17.
Polyamine content and the activity of arginine decarboxylase (EC 4.1.1.19) and ornithine decarboxylase (EC 4.1.1.17) were studied with respect to meristematic activity in primary roots and in developing lateral roots of Zea mays L. (cv. Neve Ya'ar 170) seedlings. Comparative localization of active ornithine decarboxylase and of meristematic activity were determined by labelling roots either with α-[5-14C]-difluoromethyl ornithine or with [3H]-thymidine, respectively.
Lateral roots were formed during the 72 h post-decapitation period, accompanied by an initial decline in putrescine content and by a significant increase in spennidine con-tent at 48–72 h. High levels of spermidine and lower levels of putrescine were found in the primary root apex as well. A marked increase in ornithine and arginine decarboxylase activity, as measured by 14CO2 release, was found during the 72 h post-decapitation period of lateral root development. This increase in ornithine decarboxylase activity was confirmed also by a parallel rise in the incorporation of α-[5-14C]-difluoromethyl ornithine into trichloroacetic acid-insoluble fractions. Microautoradiographs of longitudinal and cross sections of roots, labelled with α-[5-14C]-difluoromethyl ornithine, showed that ornithine decarboxylase is localized mainly in the meristematic zones, as evidenced by [3H]-thymidine incorporation. A close correlation between meristematic activity and polyamines was demonstrated in situ , suggesting that polyamine content and biosynthesis may have a role in meristematic activity in corn roots.  相似文献   

18.
Polyamines, spermidine, spermine and their precursor putrescine, are ubiquitous cell components essential for normal cell growth. Increased polyamine levels and enhanced biosynthesis have been associated with malignant transformation and tumor formation, and thus, the polyamines have been considered to be a meaningful target to cancer therapies. However, clinical cancer treatment trials using inhibitors of polyamine synthesis have been unsuccessful probably due to compensatory uptake of polyamines from extracellular sources. The antizyme proteins regulate both polyamine biosynthesis and transport, and thus, the antizymes could provide an efficient approach to control cellular proliferation compared to the mere inhibition of biosynthesis. To define the role of antizymes in proliferative processes associated with the whole animal, we have generated transgenic mice overexpressing mouse antizyme 1 gene under its own regulatory sequences. Antizyme 1 protein was abundantly expressed in various organs and the expressed antizyme protein was functional as ornithine decarboxylase activity was significantly reduced in all tissues analyzed. However, antizyme 1 overexpression caused only minor changes in tissue polyamine levels demonstrating the challenges in using the “antizyme approach” to deplete polyamines in a living animal. Neither were there any changes in cellular proliferation in the proliferative tissues of transgenic animals. Interestingly though, there was occurrence of abnormally high level of apoptosis in the non-proliferating part of the colon epithelia. Otherwise, the transgenic founder mice appeared healthy and out of seven founders six were fertile. However, none of the founders could transmit the transgene suggesting that the antizyme 1 overexpression may be deleterious to transgenic gametes.  相似文献   

19.
Glycolipid glycosyltransferase activities involved in the biosynthesis in vitro of neutral and acidic glycosphingolipids were measured in C-1300 tumors and cloned cells derived therefrom. An adrenergic clone (NIE-115) was grown in tissue culture in the presence of dibutyryl cyclic AMP and the levels of glycosyltransferases were measured before and after differentiation. Increased activities of galactosyltransferases and sialyl-transferases with a concomitant increase in glutamate decarboxylase activity (the enzyme that catalyzes the synthesis of an inhibitory neurotransmitter, γ-aminobutyric acid) were observed.  相似文献   

20.
In rat lung and cultured lung vascular cells, hypoxia decreases ornithine decarboxylase (ODC) activity and increases polyamine import. In this study, we used rat cultured pulmonary artery endothelial cells to explore the mechanism of hypoxia-induced reduction in ODC activity and determined whether this event was functionally related to the increase in polyamine import. Two strategies known to suppress proteasome-mediated ODC degradation, lactacystin treatment and use of cells expressing a truncated ODC incapable of interacting with the proteasome, prevented the hypoxia-induced decrease in ODC activity. Interestingly, though, cellular abundance of the 24-kDa antizyme, a known physiological accelerator of ODC degradation, was not increased by hypoxia. These observations suggest that an antizyme-independent ODC degradation pathway contributes to hypoxia-induced reductions of ODC activity. When reductions in ODC activity in hypoxia were prevented by the proteasome inhibitor strategies, hypoxia failed to increase polyamine transport. The induction of polyamine transport in hypoxic pulmonary artery endothelial cells thus seems to require decreased ODC activity as an initiating event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号