首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The helicoidal plane of dental occlusion is a composite feature involving axial inclination of teeth and effects of dental attrition. Recent studies disagree on its distribution and significance in hominoid primates. The distribution, development, and functional basis of the helicoidal plane are investigated here, based on quantitative analysis of dental morphology and attrition in 667 human and 60 chimpanzee dentitions. Helicoidal planes are nearly universal in the human and chimpanzee dentitions studied. Increasing axial inclination of molars from M1 to M3 is primarily responsible for the helicoidal plane, although attrition acts to increase its expression. In hominoids, increased molar axial tilt appears to be associated with facial shortening and dental reduction. Population and species comparisons suggest a functional relationship with cranial structure. Progressive axial tilt of molars producing a helicoidal plane is found consistently in mammals with cheek teeth positioned partly under the cranium, as in hominids, pongids, some cebids, macropodids, ursids, and sciurids. Facial shortening is an important trend in hominid evolution and axial inclination of molars might be expected to show progressive change from Australopithecus afarensis to recent Homo sapiens.  相似文献   

2.
In the present study 38 unworn maxillary molars (M1 = 16, M2= 12, M3 = 10) of modern humans from a Slavic necropolis were sectioned through the mesial cusps in a plane perpendicular to the cervical margin of the crown. Five slightly worn M1s and one slightly worn M3 were also used thus increasing the total sample to 44, but measurements made on the worn areas were coded as missing values. Seven measurements of enamel thickness as well as the heights of the protocone and the paracone dentine horns were recorded in order to analyze whether changes in these dimensions in anteroposterior direction can be related to the helicoidal occlusal plane. Uni- and multivariate analyses revealed that the distribution of enamel thickness within and between maxillary molars corresponds to a helicoidal occlusal wear pattern. Enamel thickness along the occlusal basin increases from anterior to posterior, which may lead to rapid development of a reverse curve of Monson in first molars when compared to posterior teeth. However, although these overall differences together with the serial, especially delayed eruption pattern of human molars, contribute to the marked expression of the helicoidal occlusal plane in Homo, differences in enamel patterning between molars indicate that a helicoidal plane is a structural feature of the orofacial skeleton. In contrast to first upper molars, second and third molars show absolutely and relatively thicker enamel under the Phase I wear facet of the paracone, i. e., the lingual slope of the paracone, than under the Phase II facet of the protocone, i. e., the buccal slope of that cusp. These proportional differences are most pronounced in M3, as evidenced by uni- and multivariate statistics. It thus appears that the pattern of enamel thickness distribution from M1 to M3 follows a trend towards providing additional tooth material in areas that are under greater functional demands, that is, corresponding to a lingual slope of wear anteriorly and to a flat or even buccal one posteriorly. In addition, the heights of the dentine horns in anteroposterior direction change in a way that lends support to the hypothesis that the axial inclination of teeth could be one of the most important factors for the development of the helicoidal occlusal plane. Finally, the changes in morphology and enamel thickness distribution from first to third upper molars found in this study suggest that molars could be “specialized” in their function, i. e., from performing proportionally more shearing anteriorly to increased crushing and grinding activities posteriorly. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Wear patterns were examined on dental casts of 202 living Lengua Indians from the Chaco area of Paraguay. Consideration was given to the development of the molar helicoidal plane, age-related changes in occlusal attrition, coalescence of dentine exposures, interproximal attrition, and erupted crown height. This study lends support to Osborn's theory of the helicoidal plane development by showing that attrition enhances rather than modifies posteruption molar occlusal planes. The rate of interproximal attrition was found to slow down with the eruption and functional initiation of the third molars. Sinuous and cavo-convex interproximal contact areas that are generated with age, however, appeared to be less abrasion resistant than straight surfaces, hence leading to an increase in interproximal attrition rates with advanced age. Maximum crown height reduction occurred between the ages of 20 and 40 years in central incisors, canines, and first molars. Kruskal-Wallis tests and log linera models failed to demonstrate significant sexually dimorphic or antimeric differences in wear patterns of Lengua teeth.  相似文献   

4.
High variability in the dentition of Homo can create uncertainties in the correct identification of isolated teeth. For instance, standard tooth identification criteria cannot determine with absolute certainty if an isolated tooth is a second or third maxillary molar. In this contribution, using occlusal fingerprint analysis, we reassess the identification of Krapina D58 (Homo neanderthalensis), which is catalogued as a third maxillary molar. We have hypothesized that the presence/absence of the distal occlusal wear facets can be used to differentiate second from third maxillary molars. The results obtained confirm our hypothesis, showing a significant difference between second and third maxillary molars. In particular we note the complete absence of Facets 7 and 10 in all third molars included in this analysis. The presence of these facets in Krapina D58 eliminates the possibility that it is a third maxillary molar. Consequently it should be reclassified as a second molar. Although this method is limited by the degree of dental wear (i.e., unworn teeth cannot be analyzed) and to individual molars in full occlusion, it can be used for tooth identification when other common criteria are not sufficient to discriminate between second and third maxillary molars. Am J Phys Anthropol 143:306–312, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Associations between occlusal dental attrition and the lingual tilting of human teeth were investigated in two aboriginal California populations. A literature survey suggests lingual tilting is related geographically and temporally to the helicoidal occlusal plane in humans; if true, lingual tilting should be expected throughout the Homo osteological record. Buccal alveolar abscesses, exposed pulp chambers, extent of tooth attrition, angle of lingual tilt, and amount of overjet were observed for lingually tilted teeth. These attributes were analyzed statistically, leading to a conclusion that lingual tilting is slight and infrequent unless tooth attrition is pronounced. It is suggested that lingual tilting is due in part to masticatory stress. A feedback model considers lingual tilting as one conspicuous manifestation of a more complex “severe attrition syndrome,” the initial stimulus for which may derive from heavy occlusal tooth wear. Untested possibilities should be examined–e.g., age-related changes, the impact of the helicoidal occlusal plane, and the role of masticatory forces.  相似文献   

6.
Abstract

Dental wear facets on the occlusal surface of premolars and molars are traces of their main function, the mastication and therefore reflect masticatory movements and also paramasticatory (i.e. non-dietary use of teeth) behavior. Here we present the Modular Wear Facet Nomenclature applicable to most mammalian dentitions. Topographic positions of wear facets in relation to the major cusps and crests of the teeth are used to designate the areas of the occlusal surface the facets occupy (e.g. their mesial, distal, lingual, or buccal position). Previous published systems for labeling wear facets have been inconsistent with each other. Therefore, we provide a synoptic review of the most widely-used terminologies, and introduce the alternative Modular Wear Facet Nomenclature. This nomenclature aims to overcome the difficulties caused by the existing inconsistent wear facet terminologies. Our new approach is applicable to dentitions where the occlusal morphology does not change significantly for most of the lifetime of the animal. In those dentitions, the primary occlusal surfaces are not significantly modified as wear facets become more extensive with wearing. This appears to be a common pattern in pre-tribosphenic, tribosphenic molars, and the teeth derived from tribosphenic precursors (e.g. bunodont molar morphologies). In teeth where the secondary occlusal surface is functionally intensely modified (i.e. high-crowned and evergrowing teeth with large areas of dentine exposed) any facet labeling system appears to be challenging, since the identification of individual facets is blurred and their spatial position may be indeterminable.  相似文献   

7.
A specimen of Pondaungia from the late middle Eocene Pondaung Formation in central Myanmar includes maxillary fragments and parts of the dentition, some hitherto undocumented, including the upper central incisor, canine, premolars and molars. Pondaungia has a large spatulate I1 closely resembling that of crown anthropoids. It possesses a stout projecting upper canine (like anthropoids) but differs from that tooth of crown anthropoids in lacking a strong mesial groove. There are three upper premolars of which P2 is distinctly smaller than P3 or P4. P3 has a buccolingually oriented mesial profile and an inflated distal profile resembling that of parapithecids and crown anthropoids. The distolingual molar cusp is a hypocone and is not homologus with the "pseudohypocone" of notharctines because the cusp is neither twinned with the protocone nor attached to a Nannopithex-fold. Pondaungia has a stout zygomatic root with a strongly demarcated muscle scar for the superficial masseter situated well above the occlusal plane. The inferior orbital margin is not preserved but the inflated suborbital region allows for the inference that the orbit was small. This specimen is not sufficiently well preserved to identify if there was postorbital closure. However, a specimen of the frontal bone of Amphipithecus shows that its orbital septum was absent or poorly developed. If, as commonly supposed, Pondaungia andAmphipithecus are sister taxa, postorbital closure was probably absent in Pondaungia. The large incisors, molars with poorly developed crests and thick enamel, together with the stoutly developed and strong dorsal component of the force vector of the superficial masseter muscle suggest that Pondaungia had a diet low in fiber, but that included hard food objects like nuts or seeds. The present material adds to the structural similarities between Pondaungia and anthropoids, but whether these similarities are due to shared descent or functional and adaptive convergence remains unresolved.  相似文献   

8.
Longitudinal studies of aboriginal children over a 20-year period have drawn attention to the wide variation in morphological features of the dentition and the way in which occlusal relationships develop. This paper summarizes some important determinants of optimal occlusal development, namely, tooth size relationships within and between dentitions, the patterns of alveolar growth, and tooth migrations during the transition from primary to permanent teeth and the nature of growth changes in the dental arches. Dental occlusion constantly changes throughout life in response to changing functional requirements. Observations limited to cross-sectional material provide an incomplete, and sometimes misleading, concept of dental occlusion and masticatory function.  相似文献   

9.
The highly autapomorphic upper molar bilophodonty of the Oligocene mammal, Arsinoitherium (Embrithopoda) is an extreme form of dilambdodonty effected by lingual positioning of normally buccally situated cusps with reduction of lingual cusps. This effectively limits the molar dentition to a single phase shearing occlusal motion. Molar and premolar morphology is very different, premolars exhibiting high longitudinal ectolophs and typical two phase occlusal morphology. A double faceted mandibular condyle and angular discontinuity between lower molar and premolar dentitions is interpreted as a means of separating premolar from molar occlusion. A bifunctional masticatory system is proposed whereby efficient premolar occlusion is achieved only after a repositioning of the temporomandibular joint. Loss of phase II occlusion in the molars is compensated by maintenance of a crushing/grinding mode in the premolars. This coupled with the ability to maintain high occlusal pressures along the length of the mandible explains the unbroken dental arcade. Arsinoitheres therefore possess an extremely specialised masticatory apparatus and are interpreted as highly selective browsing herbivores.  相似文献   

10.
We hypothesized that the anterior component of occlusal force (ACF) generated by mandibular molars was a function of molar inclination, height of the transverse condylar axis above the occlusal plane, steepness of the occlusal plane, gape, molar root dimensions, interproximal tooth contact force when not biting, and bite force. Our research aim was to identify those biomechanical factors which determine ACF. Mandibular second molars were axially loaded with a 90 N force (10 mm second molar gape) in 15 subjects, and the resulting ACF was measured at the mandibular first molar-second premolar contact using a recording technique based on interproximal frictional forces. Morphologic measurements were obtained from lateral cephalometric radiographs of each subject and included: Frankfort mandibular plane angle, occlusal plane angle, angles formed by the longitudinal axis of the second molar and the occlusal and mandibular planes, perpendicular distance from the top of the condyle to the occlusal plane, and second molar root width and root length. For ten subjects, ACF resulting from axial loads of 50, 100, 150, and 200 N was measured. For ten subjects, ACF resulting from an axial load of 50 N and second molar gapes of 10 mm, 14 mm, 18 mm, and 22 mm were measured. ACF increased with increasing gape and increased proportionally to increasing bite force. Correlation and stepwise regression analyses revealed that ACF varies with interproximal tooth contact force when not biting (contact ‘tightness’) and molar root width (model R2 = 0.71, p < 0.01). The hypothesis that ACF is a function of bite force, gape, molar root width, and interproximal contact tightness has been supported, and the hypothesis that ACF is a function of molar inclination, occlusal plane steepness, condylar axis height, and root length was rejected.  相似文献   

11.
Fused symphyses, which evolved independently in several mammalian taxa, including anthropoids, are stiffer and stronger than unfused symphyses. This paper tests the hypothesis that orientations of tooth movements during occlusion are the primary basis for variations in symphyseal fusion. Mammals whose teeth have primarily dorsally oriented occlusal trajectories and/or rotate their mandibles during occlusion will not benefit from symphyseal fusion because it prevents independent mandibular movements and because unfused symphyses transfer dorsally oriented forces with equal efficiency; mammals with predominantly transverse power strokes are predicted to benefit from symphyseal fusion or greatly restricted mediolateral movement at the symphysis in order to increase force transfer efficiency across the symphysis in the transverse plane. These hypotheses are tested with comparative data on symphyseal and occlusal morphology in several mammals, and with kinematic and EMG analyses of mastication in opossums (Didelphis virginiana) and goats (Capra hircus) that are compared with published data on chewing in primates. Among mammals, symphyseal fusion or a morphology that greatly restricts movement correlates significantly with occlusal orientation: species with more transversely oriented occlusal planes tend to have fused symphyses. The ratio of working- to balancing-side adductor muscle force in goats and opossums is close to 1:1, as in macaques, but goats and opossums have mandibles that rotate independently during occlusion, and have predominantly vertically oriented tooth movements during the power stroke. Symphyseal fusion is therefore most likely an adaptation for increasing the efficiency of transfer of transversely oriented occlusal forces in mammals whose mandibles do not rotate independently during the power stroke.  相似文献   

12.
以军都山墓地为代表的"玉皇庙文化"系中国北方青铜时代的一支具有鲜明地方特色的少数部族文化。本文对军都山墓地出土人骨牙齿标本作牙齿磨耗状况分析,试图为其饮食结构和社会经济形态的探讨提供线索。结果显示:军都山古代人群中,相同年龄组的男女两性牙齿磨耗差异不大;前部牙齿磨耗轻于后部臼齿,第一臼齿磨耗最重;臼齿磨耗样式大多呈现"正常平匀"式,臼齿磨耗角度大多较小,两者均随年龄而变化但没有显著的性别差异。经与其他样本组的对比认为军都山古代人群牙齿磨耗的特点可能与其社会经济农牧兼营的性质有关,推测动物性食物(肉食)可能在军都山古代人群主要饮食结构中占据重要比例,并包含有一定的农业经济成分。不同游牧人群牙齿磨耗程度差异较大,只有结合了磨耗形态及其他信息才有可能更切实地反映其饮食状况。  相似文献   

13.
The teeth of over 5,000 Teso schoolchildren members of a Nilo-Hamitic tribe in East Africa, were examined for morphological traits. There was a significant difference between the sexes in the number of cusps on the lower first and second molars, in the prevalence of the cusp of Carabelli, and in variability and agenesis of the upper lateral incisor. The results showed that females consistently favoured tooth reduction. There was also a tendency among those possessing extra cusps on one molar to have extra cusps or other molars. Records kept of the prevalence of the tribal custom of extracting lower central incisors indicated that this practise is rapidly dying out. On another group of teeth which had been extracted from adults common variations of root morphology were noted, together with the fissure pattern of the lower molars. Measurements were made of those teeth which were unworn and were not broken down by dental decay, and the lower third molar was found to be the largest tooth of the series. Observations on the pattern of molar tooth wear showed that the buccal as well as the occlusal surface was strongly affected.  相似文献   

14.
MOLAR OCCLUSION IN LATE TRIASSIC MAMMALS   总被引:1,自引:0,他引:1  
1. A new genus and species of late Triassic mammal, Megazostrodon rudnerae, from Lesotho in southern Africa is described. The molars are similar to those of the British Eozostrodon parvus except that they are slightly larger and the upper molars have a large external cingulum supporting well-developed cusps. 2. Molar occlusion is discussed in two groups of late Triassic mammals: Eoxostrodon and the closely related Megazostrodon on one the hand and the unnamed primitive symmetrodonts on the other. It is shown that in Eoxostrodon the upper and lower molars did not have matching occlusal surfaces upon eruption but that wear produced matching occlusal surfaces. These surfaces are confined to the internal surface of the upper molars and the external surface of the lower molars and form a series of wide-angled triangles. The main cusp of an upper molar occluded between the main and posterior subsidiary cusp of the lower molar and the main cusp of the lower molar occluded between the main and anterior subsidiary cusp of the upper molar, 3. It is shown that the molars of Docodon and HaIdanodon were possibly derived from those of a primitive mammal such as Eozostrodon. The transition involved the development on the upper molars of an internal extension which, as it increased in size, established contact with the dorsal surfaces of two adjacent lower molars. The process involved is fundamentally different from that leading to tribosphenic molars. 4. In Megaxostrodon the main cusp of the upper molars occluded between the posterior and anterior subsidiary cusps of two adjacent lower molars, i.e. more posteriorly than in Eozostrodon. Primitive Rhaetic symmetrodonts were derived from mammals which had this type of occlusion and which were also closely related to Eoxostrodon and Megaxostrodon. The transition involved a rotation of the subsidiary cusps of the upper molars externally and those of the lower molars internally. This rotation increased the shearing surfaces between occluding upper and lower molars. Cusp rotation was carried further in the acute-angled symmetrodonts (Peralestes and Spalacotherium) and pantotheres. It appears that marked cusp rotation was coupled with the acquisition of transverse movements of the lower jaw during mastication. Transverse movement was apparently not possible in cynodonts, in Eoxostrodon (and related forms) and in Docodon. 5. The evolution of therian molars involves cusp rotation as originally proposed by the Cope—Osborn theory. Criticisms of the Cope—Osborn theory are re-evaluated in light of the new late Triassic material. 6. In Rhaetic symmetrodonts, molar wear produces matching occlusal facets, but the amount of attrition necessary to produce these facets was considerably less than in Eoxostrodon. In acute-angled symmetrodonts and in pantotheres, the molars erupt with more precise occlusal surfaces and attrition was not necessary to produce matching surfaces. 7. On the basis of the structure of the molar teeth it was concluded that Eozostrodon, Megazostrodon and Erythrotherium were closely related to the Rhaetic symmetrodonts. Slightly different occlusal relationships between upper and lower molars indicated that in these early mammals constant occlusal relations were being established. 8. Primitive cynodonts, such as Thrinaxodon, are characterized by alternate tooth replacement; there is a total lack of a constant occlusal relationship between upper and lower postcanine teeth. In Thrinaxodon individual postcanines were replaced several times. The crown structures of successive generations of postcanines were different so that a freshly erupted postcanine tooth had a crown structure quite distinct from the tooth which it replaced. It has been shown that the crown structure of one of the generations of postcanine teeth of Thrinaxodon is almost identical to that of Eozostrodon except that Thrinaxodon postcanines have a single root, On the basis of this similarity and the over-all structure of the primitive cynodont skull, it was concluded that Rhaetic mammals (excluding ictidosaurs and haramyids) could be derived from primitive cynodonts. 9. All the orders of Jurassic mammals (with the possible exception of multituber-culates) were probably derived from late Triassic mammals. The apparent close relationship of late Triassic mammals is evidence of a monophyletic origin of this class.  相似文献   

15.
The robustness index (RI) is determined by multiplying dental mesiodistal and buccolingual diameters, and is used to estimate occlusal area. However, because teeth are not rectangular its calculation consistently causes overestimations. Moreover, teeth, in particular molars, are not identically shaped so overestimations vary. The current study seeks to determine the extent to which overestimations are affected by tooth shape and to improve RI's efficacy. Initially, 120 molars were sorted into six shape groups, which were determined by hypocone/hypoconulid expression. Three maxillary and three mandibular shape groups were set using the Arizona State University Dental Anthropology System. ANOVA results determined that RI overestimations, which averaged around 20%, were not the same for each shape category. Maxillary molars with large hypocones and mandibular molars with no hypoconulids were overestimated significantly less than the other molar groups. Regression-based correction formulae were generated and applied to the original sample. These formulae far more precisely estimated tooth area than RI and there were no differences in estimation based upon tooth shape. A subsequent validation study of 24 additional molars was undertaken to test the formulae on teeth not from the original sample. Overestimation/underestimation averaged 0.5% and was about the same for each of the tooth shape groups. Finally, six new correction formulae were generated using all 144 molars. The correction formulae provide, what is termed here, an adjusted robustness index (ARI), and it is recommended that ARI is used in future studies of molar occlusal area.  相似文献   

16.
Mammalian dentitions consist of different shapes/types of teeth that are positioned in different regions of the jaw (heterodont) whereas in many fish and reptiles all teeth are of similar type (homodont). The process by which heterodont dentitions have evolved in mammals is not understood. In many teleosts teeth develop in the pharynx from endoderm (endodermal teeth), whereas mammalian teeth develop from the oral ectoderm indicating that teeth can develop (and thus possibly evolve) via different mechanisms. In this article, we compare the molecular characteristics of pharyngeal/foregut endoderm with the molecular characteristics of oral ectoderm during mouse development. The expression domains of Claudin6, Hnf3β, α‐fetoprotein, Rbm35a, and Sox2 in the embryonic endoderm have boundaries overlapping the molar tooth‐forming region, but not the incisor region in the oral ectoderm. These results suggest that molar teeth (but not incisors) develop from epithelium that shares molecular characteristics with pharyngeal endoderm. This opens the possibility that the two different theories proposed for the evolution of teeth may both be correct. Multicuspid (eg. molars) having evolved from the externalization of endodermal teeth into the oral cavity and monocuspid (eg. incisors) having evolved from internalization of ectodermal armour odontodes of ancient fishes. The two different mechanisms of tooth development may have provided the developmental and genetic diversity on which evolution has acted to produce heterodont dentitions in mammals. genesis 48:382–389, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
18.
This study covers the characteristics of reduced dentitions in a population of elderly people. The sample consisted of 329 independently living individuals between 55 and 75 years of age. They all had one or more natural teeth and were all interviewed and investigated clinically. The findings showed that 13% of the subjects had a natural dentition with at least the first molars: 4–7 natural occlusal units (defined as ‘pairs of opposing teeth that support the occlusion’) occurred in 37% of the subjects; 1–4 natural occlusal units in 41% and 0 units in 9% (only anterior contacts). A removable partial denture was worn by 39% of the subjects: most of them were acrylic based dentures (61%). The percentages of restored teeth per subject were high. The need for further restorations, however, was low. Periodontal problems were uncommon: 25% of the subjects had one pocket above 5 mm: 8% had severe problems. Poor oral hygiene was present in a quarter of the cases. Most of the subjects (70%) had no pain or noises in the temporomandibular joint. Only 10% of subjects had more than one sign of craniomandibular dysfunction. Most of the subjects (85%) visit their dentist regularly and 65% had their last tooth extraction more then three years ago. A majority mentioned that they have never had problems with their dentition in the past: 50% had had no real toothache for the last five years. However problems with food-packing were often mentioned. It can be concluded that, although the dentitions of the elderly in this population are often reduced, their dentitions are in general in good condition and few give TMJ problems.  相似文献   

19.
Traumatic occlusion provides a trauma that affects the whole tooth and its supporting tissues. To study the effect of this trauma on CGRP and SP immunoreactive nerve morphology in pulp and periodontium, traumatic occlusion was induced in 2-months-old rats. The occlusal surface of the first maxillary molar in 30 rats were unilaterally raised 1 mm with a composite material. At different observation periods up to 30 days, the rats were transcardiacally perfused, the jaws demineralized, sectioned and processed for immunohistochemistry with the avidin-biotin-peroxidase method. Changes in nerve morphology, distribution and density in first and second molars and their supporting tissues were analyzed and compared in experimental (n = 30) and control rats (n = 14). Already after 5 days with traumatic occlusion, 22% of the experimental teeth had increased density of CGRP and SP immunoreactive nerves locally in gingiva, the periodontal ligament and the pulp, while in 15%, axonal proliferation and changed nerve morphology were found in the whole pulp (severe reaction). During a 20-day period, the pulpal nerve reactions progressed and included the whole pulp in 46% of the experimental teeth. The periodontal nerve responses were still localized only to the cervical and apical regions, and they remained local in these areas throughout the experimental periods. After 20 days the number of teeth with severe nerve changes seemed to decrease. The study shows that an unilateral change in occlusion of the first molar initiate nerve responses in the total molar dentition. In this experimental model the pulpal axons containing CGRP and SP reacted more serious to occlusal trauma than the nerves in the periodontium. The results indicate that the nerve changes in some cases might be transient.  相似文献   

20.
Summary Traumatic occlusion provides a trauma that affects the whole tooth and its supporting tissues. To study the effect of this trauma on CGRP and SP immunoreactive nerve morphology in pulp and periodontium, traumatic occlusion was induced in 2-months-old rats. The occlusal surface of the first maxillary molar in 30 rats were unilaterally raised 1 mm with a composite material. At different observation periods up to 30 days, the rats were transcardiacally perfused, the jaws demineralized, sectioned and processed for immunohistochemistry with the avidin-biotin-peroxidase method. Changes in nerve morphology, distribution and density in first and second molars and their supporting tissues were analyzed and compared in experimental (n=30) and control rats (n=14). Already after 5 days with traumatic occlusion, 22% of the experimental teeth had increased density of CGRP and SP immunoreactive nerves locally in gingiva, the periodontal ligament and the pulp, while in 15%, axonal proliferation and changed nerve morphology were found in the whole pulp (severe reaction). During a 20-day period, the pulpal nerve reactions progressed and included the whole pulp in 46% of the experimental teeth. The periodontal nerve responses were still localized only to the cervical and apical regions, and they remained local in these areas throughout the experimental periods. After 20 days the number of teeth with severe nerve changes seemed to decrease. The study shows that an unilateral change in occlusion of the first molar initiate nerve responses in the total molar dentition. In this experimental model the pulpal axons containing CGRP and SP reacted more serious to occlusal trauma than the nerves in the periodontium. The results indicate that the nerve changes in some cases might be transient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号