首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Matters, G. L. and Scandalios, J. G. 1987. Synthesis of isozymesof superoxide dismutase in maize leaves in response to O3 SO2and elevated O2.—J. exp. Bot 38: 842–852. The activities of the enzymes superoxide dismutase (SOD) andcatalase were determined in maize leaves treated with O3or SO2for8 h, or with elevated levels of oxygen for up to 96 h. NeitherO3nor SO2significantly increased the levels of superoxide dismutaseor catalase activity. However, after 72 h in an atmosphere containing90% oxygen, superoxide dismutase activity was increased, butnot the activities of catalase, ascorbate pcroxidase, and malatedehydrogenase. Immunological analysis showed that amounts ofthe cytosolic superoxide dismutase isozymes, SOD-2 and SOD-4,were increased by the elevated oxygen but not the chroloplast(SOD-1) or mitochondrial (SOD-3) isozymes. Immunoprecipitationof translation products of leaf polysomes indicated that thehigher levels of SOD-2 and SOD-4 were due to increased amountsof polysome-bound mRNA coding for these proteins. The specificresponse of SOD-2 and SOD-4 to 90% oxygen treatments contrastswith the increase in all SOD isozymes in maize leaves treatedwith the herbicide paraquat. Key words: Air pollutants, maize, oxidative stress, oxygen, superoxide dismutase  相似文献   

2.
10-day-old maize leaves were treated with the oxygen free radical-generating herbicide paraquat for 12 h. Paraquat treatments (10(-5) M) resulted in a 40% increase in superoxide dismutase activity and a smaller increase in catalase activity. The increase in total superoxide dismutase (SOD) activity correlates with higher levels of specific isozymes. The chloroplast (SOD-1) and cytosolic (SOD-2 and SOD-4) forms were increased significantly; however, the mitochondrial form (SOD-3) was increased only slightly. Higher levels of SOD-4 and SOD-3 after paraquat exposure were the result of increased synthesis of these proteins, as determined by labeling in vivo with [35S]methionine. Isolation and in vitro translation of polysomes from 10(-5) M paraquat-treated leaves indicated that paraquat increased the amount of polysomal mRNA which codes for SOD-4 and SOD-3. Superoxide dismutase induction does not appear to be a response that is specific to paraquat, since another superoxide-generating compound, juglone, caused a similar increase in total superoxide dismutase activity. Therefore, the effect of these compounds on the expression of the maize Sod genes is exerted via their ability to generate superoxide.  相似文献   

3.
In vitro translation of maize scutellar polysome-bound RNA and poly(A)+RNA produces a precursor for the mitochondrial superoxide dismutase (SOD-3) of maize, which can be immunoprecipitated with SOD-3 monospecific antibodies. The precursor SOD-3 (preSOD-3) has both a greater molecular weight and a more positive isoelectric point than the mature (purified) SOD-3. These differences were not observed for the cytosolic isozyme (SOD-4) which was similarly synthesized and isolated. PreSOD-3 specifically associates with maize mitochondria when incubated in vitro, whereas SOD-4 does not. The ionophore valinomycin (at concentrations of over 1 microM) inhibits the uptake of preSOD-3 into mitochondria. The integrity of the mitochondrial preparations was determined by assay of oxygen consumption, citrate synthase, and cytochrome-c oxidase activity.  相似文献   

4.
The cytosolic and mitochondrial forms of Superoxide dismutase have been purified to homogeneity from an inbred line of maize. The cytosolic isozymes SOD-2 and SOD-4 are dimers with a molecular weight of 31,000–33,000, composed of apparently equal subunits, and are remarkably similar with respect to their ultraviolet absorption spectra, antigenic specificity, and sensitivity to cyanide, azide, hydrogen peroxide, and diethyldithiocarbamate. These and other data suggest that both isozymes belong to the family of copper and zinc-containing Superoxide dismutases. The mitochondrial isozyme, SOD-3, is unlike the cytosolic isozymes in every parameter studied and appears to be similar to the mitochondrial manganese-containing Superoxide dismutases purified from other eukaryotic organisms. It is a tetramer with a molecular weight of approximately 90,000, composed of apparently equal subunits, and is insensitive to both 1 mm cyanide and hydrogen peroxide.  相似文献   

5.
6.
The chloroplast-associated form of superoxide dismutase from maize (Zea mays L.) (SOD-1) has been purified by a stepwise procedure consisting of (NH4)2SO4 fractionation, G-100 Sephadex gel filtration, DEAE-Sephacel chromatography, and hydroxylapatite chromatography. This procedure resulted in a single band on sodium dodecyl sulfate-polyacrylamide gels indicating that the preparation is homogeneous. The holoenzyme molecular weight was estimated at 31,000 to 33,000 by gel filtration. The subunit molecular weight of this dimeric protein was estimated at 14,500 on sodium dodecyl sulfate-polyacrylamide gels. Studies involving amino acid composition analysis, immunological cross-reactivity, in vitro subunit hybridizations, and H2O2 sensitivity indicate that SOD-1 differs significantly from SOD-2 and SOD-4, the other cupro-zinc forms of SOD from maize. The possible physiological role of SOD-1 within the chloroplast is discussed.  相似文献   

7.
Seed oil bodies (OBs) are intracellular particles that store lipids. In maize embryos, the oil bodies are accumulated mainly in the scutellum. Oil bodies were purified from the scutellum of germinating maize seeds and the associated proteins were extracted and subjected to 2-DE analysis followed by LC-MS/MS for protein identification. In addition to the previously known oil body proteins oleosin, caleosin and steroleosin, new proteins were identified.  相似文献   

8.
Coronary arterioles of exercise-trained (EX) pigs have enhanced nitric oxide (NO.)-dependent dilation. Evidence suggests that the biological half-life of NO. depends in part on the management of the superoxide anion. The purpose of this study was to test the hypothesis that expression of cytosolic copper/zinc-dependent superoxide dismutase (SOD)-1 is increased in coronary arterioles as a result of exercise training. Male Yucatan pigs either remained sedentary (SED, n = 4) or were EX (n = 4) on a motorized treadmill for 16-20 wk. Individual coronary arterioles ( approximately 100-microm unpressurized internal diameter) were dissected and frozen. Coronary arteriole SOD-1 protein (via immunoblots) increased as a result of exercise training (2.16 +/- 0.35 times SED levels) as did SOD-1 enzyme activity (measured via inhibition of pyrogallol autooxidation; approximately 75% increase vs. SED). In addition, SOD-1 mRNA levels (measured via RT-PCR) were higher in EX arterioles (1.68 +/- 0.16 times the SED levels). There were no effects of exercise training on the levels of SOD-2 (mitochondrial), catalase, or p67(phox) proteins. Thus chronic aerobic exercise training selectively increases the levels of SOD-1 mRNA, protein, and enzymatic activity in porcine coronary arterioles. Increased SOD-1 could contribute to the enhanced NO.-dependent dilation previously observed in EX porcine coronary arterioles by improving management of superoxide in the vascular cell environment, thus prolonging the biological half-life of NO.  相似文献   

9.
D. Zhu  J. G. Scandalios 《Genetics》1992,131(4):803-809
Superoxide dismutases (SOD) are ubiquitous in aerobic organisms and are believed to play a significant role in protecting cells against the toxic, often lethal, effect of oxygen free radicals. However, direct evidence that SOD does in fact participate in such a protective role is scant. The MnSOD-deficient yeast strain (Sod2d) offered an opportunity to test the functional role of one of several SOD isozymes from the higher plant maize in hopes of establishing a functional bioassay for other SODs. Herein, we present evidence that MnSOD functions to protect cells from oxidative stress and that this function is conserved between species. The maize Sod3 gene was introduced into the yeast strain Sod2d where it was properly expressed and its product processed into the yeast mitochondrial matrix and assembled into the functional homotetramer. Most significantly, expression of the maize Sod3 transgene in yeast rendered the transformed yeast cells resistant to paraquat-induced oxidative stress by complementing the MnSOD deficiency. Furthermore, analyses with various deletion mutants of the maize SOD-3 transit peptide in the MnSOD-deficient yeast strain indicate that the initial portion (about 8 amino acids) of the maize transit peptide is required to direct the protein into the yeast mitochondrial matrix in vivo to function properly. These findings indicate that the functional role of maize MnSOD is conserved and dependent on its proper subcellular location in the mitochondria of a heterologous system.  相似文献   

10.
Mustard gas exposure causes inflammatory lung diseases. Many inflammatory lung diseases are associated with oxidative stress. Reactive oxygen species (ROS) are involved in the maintenance of physiological functions. In tissues, it is therefore essential to maintain a steady-state level of antioxidant activity to allow both for the physiological functions of ROS to proceed and at the same time preventing tissue damage. We have recently reported that mustard gas exposure decreases the overall activity of superoxide dismutase (SOD). In the present study, we investigated the effects of mustard gas on each of the three isozymes: SOD-1 (Cu/Zn), SOD-2 (Mn), and SOD-3 (extracellular). Adult guinea pigs were intratracheally injected single doses of 2-chloroethyl ethyl sulfide (CEES) (2 mg/kg body weight) in ethanol. Control animals were injected with vehicle in the same way. The animals were sacrificed after 7 days, and lungs were removed after perfusion with physiological saline. Lung injury was established by measuring the leakage of iodinated-BSA into lung tissue. Mustard gas exposure caused a significant increase in the activity of SOD-1 (35%). However, the SOD-3 activity which is the predominant type in lung was significantly decreased (62%), whereas no change was observed in SOD-2 activity. Thus the decrease in the total activity of SOD was primarily due to the SOD-3 isozyme. Northern blot analysis indicated 3.5-fold increased expression of SOD-1 in mustard gas exposed lung, but no significant change in the expression of SOD-2 and SOD-3 was observed. Mustard gas exposure did not cause mutation in the coding region of SOD-1 gene while causing modulation in expression levels. The protein levels of SOD-1, SOD-2, and SOD-3 were not altered significantly in the mustard gas exposed lung. Our results indicate that the overall decrease in the activity of SOD by mustard gas exposure is probably mediated by direct inactivation of the SOD-3 gene or the enzyme itself. This decrease in the activity of SOD-3 may be due to the cleavage of active form of the protein to an inactive form. The existence of active and inactive forms of SOD-3 as a result of shifts in Cys-Cys disulfide bonding has been described in human, recently. Studies are underway in our laboratory to investigate whether mustard gas induced inactivation of SOD-3 in lung is similarly mediated by a change in Cys-Cys disulfide bonding.  相似文献   

11.
Two of four isozymes of superoxide dismutase (SOD) (EC 1.15.1.1) were purified from Scots pine (Pinus sylvestris L.) needles. One form was cytosolic (SOD-1) and the other was associated with chloroplasts (SOD-3). The holoenzyme molecular masses was estimated at approximately 35 kilodaltons by gel filtration. The subunit molecular weight of the dimeric enzymes was estimated to 16.5 kilodaltons (SOD-1) and 20.4 kilodaltons (SOD-3) on sodium dodecyl sulfatepolyacrylamide gels. The NH2-terminal sequence of the pine enzymes showed similarities to other purified superoxide dismutases located in the corresponding compartment. The cytosolic form revealed two additional amino acids at position 1 and 2 at the NH2-terminal. Both forms were cyanide- and hydrogenperoxide-sensitive and SOD-3 was found to contain approximately one copper atom per subunit, indicating that they belong to the cupro-zinc SODs. The isoelectric point was 4.9 and 4.5 for SOD-1 and SOD-3, respectively.  相似文献   

12.
13.
14.
In the scutellum of maize during post-germinative development,the primary form of catalase expressed is the product of theCat2 structural gene, CAT-2. The developmental time-course ofCAT-2 protein follows a rapid increase with a peak at approximately4–5 d alter germination and a subsequent decline. An inbredstrain of maize, A337, has been found to exhibit a similar generalizedprofile with the significant exception that the level of CAT-2protein present in the scutellum is far above that in the ‘typical’maize lines exemplified by W64A. Our data suggest that the higherlevels of CAT-2 exhibited in A337 are due to increased synthesisand accumulation of more CAT-2 protein, and not merely to enzymeactivation. A comparison of A337 and W64A showed that the twolines are similar with respect to number of glyoxysomes andwith the exception of catalase, other microbody associated enzymesexhibit similar activity levels and developmental profiles.Thus, the results presented suggest that the catalasc developmentalprogramme characteristic of line A337 is not due to a concurrentincrease and subsequent decline in the number of glyoxysomesformed in the scutellum during this developmental period butis instead due to a greater level of CAT-2 protein. The datafurther support our earlier findings that the genes coding forglyoxysomal enzymes in maize are non-coordinately regulated. Key words: Gene regulation, glyoxysomes, catalase, glyoxysomal enzymes  相似文献   

15.
Summary SOD-4, a cytosolic form of superoxide dismutase in maize, originally was defined as a single band of activity by zymogram analysis. The protein was purified to homogeneity as shown by a single band on native or denaturing polyacrylamide gels and a single spot on two dimensional gels. The N-terminal amino acid sequence for the first 20 residues was determined for the purified SOD-4 protein. All residues were clearly determined except for residue twelve, where both glutamic and aspartic acids were found. A maize gt11 cDNA library was constructed from scutellar poly(A)+RNA. Two cDNAs were isolated, restriction mapped, and their DNA sequences determined. The amino acid sequence deduced from both cDNAs matched perfectly the N-terminal sequence of the purified protein except for the residue at position 12. Significantly, at the twelfth codon, one cDNA was found to code for glutamic acid and the other cDNA had a codon for aspartic acid. Both cDNAs contained similar but not identical 5 and 3 untranslated sequences. Both cDNAs contained polyadenylation signals and tails. cDNA isolations, RNA, and genomic DNA blots confirm the existence and expression of two genes that produce indistinguishable SOD-4 proteins.  相似文献   

16.
Deinococcus grandis possesses two types of superoxide dismutase (SOD, E. C. 1.15.1.1.) that show distinct electrophoretic behavior, one that migrates slowly and the other that migrates rapidly (SOD-1 and SOD-2, respectively). In this study, SOD-1 was uniformly and abundantly detected, regardless of growth phase, whereas SOD-2 was not detected during early growth, but was detectable from the exponential growth phase. In addition, a substantial increase in SOD-2 was observed in cells that were treated with potassium superoxide or UV, which suggests that SOD-2 is an inducible protein produced in response to stressful environments. Insensitivity of SOD-1 to both H2O2 and cyanide treatment suggests that SOD-1 is MnSOD. However, SOD-2 would be FeSOD, since it lost activity in response to H2O2 treatment, but not to cyanide. Localization studies of D. grandis iso-SODs in sucrose-shocked cells suggest that SOD-1 is a membrane-associated enzyme, whereas SOD-2 is a cytosolic enzyme. In conclusion, SOD-1 seems to be an essential constitutive enzyme for viability and SOD-2 appears to be an inducible enzyme that is probably critical for survival upon UV irradiation and oxidative stress.  相似文献   

17.
Mutations in the Cu/Zn-superoxide dismutase (SOD-1) gene are responsible for a familial form of amyotrophic lateral sclerosis. In humans and experimental models, death of motor neurons is preceded by formation of cytoplasmic aggregates containing mutant SOD-1 protein. In our previous studies, heat shock protein 70 (HSP70) prolonged viability of cultured motor neurons expressing mutant human SOD-1 and reduced formation of aggregates. In this paper, we report that mutant SOD-1 proteins have altered solubility in cells relative to wild-type SOD-1 and can form a direct association with HSP70 and other stress proteins. Whereas wild-type human and endogenous mouse SOD-1 were detergent-soluble, a portion of mutant SOD-1 was detergent-insoluble in protein extracts of NIH3T3 transfected with SOD-1 gene constructs, spinal cord cultures established from G93A SOD-1 transgenic mouse embryos, and lumbar spinal cord from adult G93A transgenic mice. A direct association of HSP70, HSP40, and alphaB-crystallin with mutant SOD-1 (G93A or G41S), but not wild-type or endogenous mouse SOD-1, was demonstrated by coimmunoprecipitation. Mutant SOD-1.HSP70 complexes were predominantly in the detergent-insoluble fraction. However, only a small percentage of total cellular mutant SOD-1 was detergent-insoluble, suggesting that mutation-induced alteration of protein conformation may not in itself be sufficient for direct interaction with heat shock proteins.  相似文献   

18.
Fumarase (EC 4.2.1.2) catalyzes reversible interconversion of malate and fumarate. It is usually associated with the tricarboxylic acid cycle in mitochondria, although the cytosolic form has also been detected. We investigated the expression of two fumarase genes and activities of the mitochondrial and cytosolic isoforms of fumarase in maize (Zea mays) scutellum during germination. Both isoforms were purified to electrophoretic homogeneity. The cytosolic form had low optimum pH (6.5) and high affinity to malate (Km 5 μM) when compared with the mitochondrial form (optimum pH 7.0, Km 50 μM). The cytosolic form was strongly activated by Mg2+ and even more by Mn2+, whereas the mitochondrial form was moderately activated by Mg2+ and Mn2+ was less effective. The highest fumarase activity in scutellum and a high expression of the gene encoding the cytosolic form were observed during the maximal activity of the glyoxylate cycle. In leaves, the localization of fumarase is only mitochondrial and only one fumarase gene is expressed. It is concluded that the function of cytosolic fumarase in maize scutellum can be related to metabolism of succinate formed in the glyoxylate cycle.  相似文献   

19.
Photosynthesis of leaf discs from transgenic tobacco plants (Nicotiana tabacum) that express a chimeric gene that encodes chloroplast-localized Cu/Zn superoxide dismutase (SOD+) was protected from oxidative stress caused by exposure to high light intensity and low temperature. Under the same conditions, leaf discs of plants that did not express the pea SOD isoform (SOD-) had substantially lower photosynthetic rates. Young plants of both genotypes were more sensitive to oxidative stress than mature plants, but SOD+ plants retained higher photosynthetic rates than SOD- plants at all developmental stages tested. Not surprisingly, SOD+ plants had approximately 3-fold higher SOD specific activity than SOD- plants. However, SOD+ plants also exhibited a 3- to 4-fold increase in ascorbate peroxidase (APX) specific activity and had a corresponding increase in levels of APX mRNA. Dehydroascorbate reductase and glutathione reductase specific activities were the same in both SOD+ and SOD- plants. These results indicate that transgenic tobacco plants that overexpress pea Cu/Zn SOD II can compensate for the increased levels of SOD with increased expression of the H2O2-scavenging enzyme APX. Therefore, the enhancement of the active oxygen-scavenging system that leads to increased oxidative stress protection in SOD+ plants could result not only from increased SOD levels but from the combined increases in SOD and APX activity.  相似文献   

20.
利用SOD和LDH同工酶电泳分析,研究大豆黄酮对衰老小鼠的抗氧化作用。结果显示大豆黄酮没有改变SOD和LDH同工酶谱的特征,但对因衰老引起的小鼠脑组织LDH和SOD同工酶活性、各组分的相对活性和比活力的变化有不同程度的改善作用,即LDH同工酶中LDH-2、LDH-3的活性明显下降,LDH-1的活性下降最为明显,而LDH-4的活性有所下降,但不显著,LDH-5的活性几乎没有变化,SOD同工酶的SOD-1和SOD-2的活性有不同程度的升高。这表明大豆黄酮是通过抑制LDH同工酶H亚基的合成来降低LDH的活性,而对M亚基的合成没有影响,并且能够促进SOD同工酶SOD-1和SOD-2的合成,不影响其遗传稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号