共查询到20条相似文献,搜索用时 8 毫秒
1.
Gotoh M Yada T Sato T Akashima T Iwasaki H Mochizuki H Inaba N Togayachi A Kudo T Watanabe H Kimata K Narimatsu H 《The Journal of biological chemistry》2002,277(41):38179-38188
2.
3.
Uyama T Kitagawa H Tanaka J Tamura J Ogawa T Sugahara K 《The Journal of biological chemistry》2003,278(5):3072-3078
We identified a novel human chondroitin N-acetylgalactosaminyltransferase, designated chondroitin GalNAcT-2 after a BLAST analysis of the GenBank(TM) data base using the sequence of a previously described human chondroitin N-acetylgalactosaminyltransferase (chondroitin GalNAcT-1) as a probe. The new cDNA sequence contained an open reading frame encoding a protein of 542 amino acids with a type II transmembrane protein topology. The amino acid sequence displayed 60% identity to that of human chondroitin GalNAcT-1. Like chondroitin GalNAcT-1, the expression of a soluble form of the protein in COS-1 cells produced an active enzyme, which not only transferred beta1,4-N-acetylgalactosamine (GalNAc) from UDP-[(3)H]GalNAc to a polymer chondroitin representing growing chondroitin chains (beta-GalNAc transferase II activity) but also to GlcUA beta 1-3Gal beta 1-O-C(2)H(4)NHCbz, a synthetic substrate for beta-GalNAc transferase I that transfers the first GalNAc to the core tetrasaccharide in the protein-linkage region of chondroitin sulfate. In contrast, the tetrasaccharide serine (GlcUA beta 1-3Gal beta 1-3Gal beta 1-4Xyl beta 1-O-Ser) derived from the linkage region, which is an inert acceptor substrate for chondroitin GalNAcT-1, served as an acceptor substrate. The coding region of this enzyme was divided into seven discrete exons, which is similar to the genomic organization of the chondroitin GalNAcT-1 gene, and was localized to chromosome 10q11.22. Northern blot analysis revealed that the chondroitin GalNAcT-2 gene exhibited a ubiquitous but differing expression in human tissues, and the expression pattern differed from that of chondroitin GalNAcT-1. Thus, we demonstrated redundancy in the chondroitin GalNAc transferases involved in the biosynthetic initiation and elongation of chondroitin sulfate, which is important for understanding the biosynthetic mechanisms leading to the selective chain assembly of chondroitin/dermatan sulfate on the linkage region tetrasaccharide common to various proteoglycans containing chondroitin/dermatan sulfate and heparin/heparan sulfate chains. 相似文献
4.
Chondroitin sulfate E (CS-E), a chondroitin sulfate isomer containing GlcAbeta1-3GalNAc(4,6-SO(4)) repeating unit, was found in various mammalian cells in addition to squid cartilage and is predicted to have several physiological functions in various mammalian systems such as mast cell maturation, regulation of procoagulant activity of monocytes, and binding to midkine or chemokines. To clarify the physiological functions of GalNAc(4,6-SO(4)) repeating unit, preparation of CS-E with a defined content of GalNAc(4,6-SO(4)) residues is important. We report here the in vitro synthesis of CS-E from chondrotin sulfate A (CS-A) by the purified squid N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) which catalyzed transfer of sulfate from 3(')-phosphoadenosine-5(')-phosphosulfate to position 6 of GalNAc(4SO(4)) residues of CS-A and dermatan sulfate (DS). When CS-A was used as an acceptor, about half of GalNAc(4SO(4)) residues, on average, were converted to GalNAc(4,6-SO(4)) residues. Anion exchange chromatography of the CS-E synthesized in vitro showed marked heterogeneity in negative charge; the proportion of GalNAc(4,6-SO(4)) in the most negative fraction exceeded 70% of the total sulfated repeating units. GalNAc4S-6ST also catalyzed the synthesis of oversulfated DS with GalNAc(4,6-SO(4)) residues from DS. Squid GalNAc4S-6ST thus should provide a useful tool for preparing CS-E and oversulfated DS with a defined proportion of GalNAc(4,6-SO(4)) residues. 相似文献
5.
A monoclonal antibody that specifically recognizes a glucuronic acid 2-sulfate-containing determinant in intact chondroitin sulfate chain 总被引:6,自引:0,他引:6
M Yamagata K Kimata Y Oike K Tani N Maeda K Yoshida Y Shimomura M Yoneda S Suzuki 《The Journal of biological chemistry》1987,262(9):4146-4152
Monoclonal antibodies produced against chick embryo limb bud proteoglycan (PG-M) were selected for their ability to recognize determinants on intact chondroitin sulfate chains. One of these monoclonal antibodies (IgM; designated MO-225) reacts with PG-M, chick embryo cartilage proteoglycans (PG-H, PG-Lb, and PG-Lt), and bovine nasal cartilage proteoglycan, but not with Swarm rat chondrosarcoma proteoglycan. The reactivity of PG-H to MO-225 is not affected by keratanase digestion but is completely abolished after chondroitinase digestion. Competitive binding analyses with various glycosaminoglycan samples indicate that the determinant recognized by MO-225 resides in a D-glucuronic acid 2-sulfate(beta 1----3)N-acetylgalactosamine 6-sulfate disaccharide unit (D-unit) common to antigenic chondroitin sulfates. A tetrasaccharide trisulfate containing D-unit at the reducing end is the smallest chondroitin sulfate fragment that can inhibit the binding of the antibody to PG-H. Decreasing the size of a D-unit-rich chondroitin sulfate by hyaluronidase digestion results in progressive reduction in its inhibitory activity. The results suggest that the epitope has a requirement for a long stretch of a disaccharide-repeating structure for a better fit to the antibody. 相似文献
6.
An important characteristic of malaria parasite Plasmodium falciparum-infected red blood cells (IRBCs) is their ability to adhere to host endothelial cells and accumulate in various organs. Sequestration of IRBCs in the placenta, associated with excess perinatal and maternal mortality, is mediated in part by adhesion of parasites to the glycosaminoglycan chondroitin sulfate A (CSA) present on syncytiotrophoblasts lining the placental blood spaces. To define key structural features for parasite interactions, we isolated from CSA oligosaccharide fractions and established by electrospray mass spectrometry and high performance liquid chromatography disaccharide composition analysis their differing chain length, sulfate content, and sulfation pattern. Testing these defined oligosaccharide fragments for their ability to inhibit IRBC adhesion to immobilized CSA revealed the importance of non-sulfated disaccharide units in combination with 4-O-sulfated disaccharides for interaction with IRBCs. Selective removal of 6-O-sulfates from oligo- and polysaccharides to increase the proportion of non-sulfated disaccharides enhanced activity, indicating that 6-O-sulfation interferes with the interaction of CSA with IRBCs. Dodecasaccharides with four or five 4-O-sulfated and two or one non-sulfated disaccharide units, respectively, comprise the minimum chain length for effective interaction with IRBCs. Comparison of the activities of CSA and CSB oligo- and polysaccharides with a similar sulfation pattern and content achieved from partial desulfation demonstrated that glucuronic acid rather than iduronic acid residues are important for IRBC binding. 相似文献
7.
Two N-acetylgalactosaminyltransferase are involved in the biosynthesis of chondroitin sulfate 总被引:1,自引:0,他引:1
Two N-acetylgalactosaminyltransferases, designated I and II, have been purified from the microsomal fraction of calf arterial tissue and separated on Bio-Gel A. N-Acetylgalactosaminyltransferase I was purified 450-fold. It requires Mn2+ for maximal activity and transfers N-acetylgalactosamine residues from UDP-[1-3H]GalNAc in beta-glycosidic configuration to the non-reducing terminus of the acceptor substrates GlcA(beta 1-3)Gal(beta 1-3)Gal, GlcA(beta 1-3)Gal(beta 1-4)Glc and GlcA(beta 1-3)Gal. Even-numbered chondroitin oligosaccharides serve as acceptors for N-acetylgalactosaminyltransferase II, which transfers N-acetylgalactosamine from UDP-[1-3H]GalNAc to the non-reducing glucuronic acid residues of oligosaccharide acceptor substrates. Maximum transfer rates were obtained with a decasaccharide derived from chondroitin. Longer or shorter-chain chondroitin oligosaccharides are less effective acceptor substrates. All reaction products formed by N-acetylgalactosaminyltransferases I and II are substrates of beta-N-acetylhexosaminidase, which splits off the transferred [1-3H]GalNAc completely. In the microsomal fraction N-acetylgalactosaminyltransferase II had a 300-fold higher specific activity than N-acetylgalactosaminyltransferase I. In contrast to enzyme I, enzyme II loses much of its activity during the purification procedure and undergoes rapid thermodenaturation. GlcA-Gal-Gal is a characteristic sequence of the carbohydrate-protein linkage region of proteochondrioitin sulfate. The acceptor capacity of this trisaccharide suggests that N-acetylgalactosaminyltransferase I is involved in the synthesis of the carbohydrate-protein linkage region. Since N-acetylgalactosaminyltransferase II is highly specific for chondroitin oligosaccharides, we conclude that it participates in chain elongation during chondroitin sulfate synthesis. 相似文献
8.
Toru Uyama Hiroshi Kitagawa Jun-ichi Tamura Ji Kazuyuki Sugahara 《The Journal of biological chemistry》2002,277(11):8841-8846
Based on sequence homology with the recently cloned human chondroitin synthase, we identified a novel beta1,4-N-acetylgalactosaminyltransferase, which consisted of 532 amino acids with a type II transmembrane protein topology. The amino acid sequence displayed 27% identity to that of human chondroitin synthase. The expression of a soluble form of the protein in COS-1 cells produced an active enzyme, which transferred beta1,4-N-acetylgalactosamine (GalNAc) from UDP-[(3)H]GalNAc not only to a polymer chondroitin representing growing chondroitin chains (beta-GalNAc transferase II activity) but also to GlcUAbeta1--3Galbeta1-O-C(2)H(4)NH-benzyloxycarbonyl, a synthetic substrate for beta-GalNAc transferase I that transfers the first GalNAc to the core tetrasaccharide in the protein linkage region of chondroitin sulfate. Hence, the enzyme is involved in the biosynthetic initiation and elongation of chondroitin sulfate and is the key enzyme responsible for the selective chain assembly of chondroitin/dermatan sulfate on the linkage region tetrasaccharide common to various proteoglycans containing chondroitin/dermatan sulfate or heparin/heparan sulfate chains. The coding region of this enzyme was divided into seven discrete exons and localized to chromosome 8. Northern blot analysis revealed that the chondroitin GalNAc transferase gene exhibited a ubiquitous but markedly differential expression in human tissues and that the expression pattern was similar to that of chondroitin synthase. Thus, more than two distinct enzymes forming the novel gene family are required for chain initiation and elongation in chondroitin/dermatan sulfate as in the biosynthesis of heparin/heparan sulfate. 相似文献
9.
Ascorbic acid and the synthesis of chondroitin sulfate 总被引:4,自引:0,他引:4
10.
11.
Fongmoon D Shetty AK Basappa Yamada S Sugiura M Kongtawelert P Sugahara K 《The Journal of biological chemistry》2007,282(51):36895-36904
Chondroitin sulfate K (CS-K) from king crab cartilage rich in rare 3-O-sulfated glucuronic acid (GlcUA(3S)) displayed neuritogenic activity and affinity toward various growth factors like CS-E from squid cartilage. CS-K-mediated neuritogenesis of mouse hippocampal neurons in culture was abolished by digestion with chondroitinase (CSase) ABC, indicating the possible involvement of GlcUA(3S). However, identification of GlcUA(3S) in CS chains by conventional high performance liquid chromatography has been hampered by its CSase ABC-mediated degradation. To investigate the degradation process, an authentic CS-E tetrasaccharide, Delta4,5HexUA-GalNAc(4S)-GlcUA(3S)-GalNAc(4S), was digested with CSase ABC, and the end product was identified as GalNAc(4S) by electrospray ionization mass spectrometry (ESI-MS). Putative GalNAc(6S) and GalNAc(4S,6S), derived presumably from GlcUA(3S)-GalNAc(6S) and GlcUA(3S)-GalNAc(4S,6S), respectively, were also detected by ESI-MS in the CSase ABC digest of a CS-E oligosaccharide fraction resistant to CSases AC-I and AC-II. Intermediates during the CSase ABC-mediated degradation of Delta4,5HexUA(3S)-GalNAc(4S) to GalNAc(4S) were identified through ESI-MS of a partial CSase ABC digest of a CS-K tetrasaccharide, GlcUA(3S)-GalNAc(4S)-GlcUA(3S)-GalNAc(4S), and the conceivable mechanism behind the degradation of the GlcUA(3S) moiety was elucidated. Although a fucose branch was also identified in CS-K, defucosylated CS-K exhibited greater neuritogenic activity than the native CS-K, excluding the possibility of the involvement of fucose in the activity. Rather, (3S)-containing disaccharides are likely involved. These findings will enable us to detect GlcUA(3S)-containing disaccharides in CS chains to better understand CS-mediated biological processes. 相似文献
12.
13.
Y Nakanishi M Shimizu K Otsu S Kato M Tsuji S Suzuki 《The Journal of biological chemistry》1981,256(11):5443-5449
A soluble enzyme from quail oviduct which incorporates sulfate into position 6 of the nonreducing N-acetylgalactosamine 4-sulfate end group of chondroitin sulfate has been purified. This enzyme (termed "terminal 6-sulfotransferase") was partially separated from a 6-sulfotransferase present in the same tissue which catalyzes the incorporation of sulfate into interior portion of unsulfated chondroitin. The basic requirements for the terminal 6-sulfotransferase reaction were shown to be 3'-phosphoadenylyl sulfate (donor) and chondroitin 4-sulfate (acceptor). The substitution of unsulfated chondroitin (prepared from squid skin) for chondroitin 4-sulfate resulted in a total loss of activity. These results suggest that the organization of the proteoglycan-synthesizing apparatus may well involve hitherto unrecognized mechanisms for the sulfation of chondroitin chains. 相似文献
14.
Tanaka K Arao T Tamura D Aomatsu K Furuta K Matsumoto K Kaneda H Kudo K Fujita Y Kimura H Yanagihara K Yamada Y Okamoto I Nakagawa K Nishio K 《PloS one》2012,7(1):e27922
SRPX2 (Sushi repeat-containing protein, X-linked 2) has recently emerged as a multifunctional protein that is involved in seizure disorders, angiogenesis and cellular adhesion. Here, we analyzed this protein biochemically. SRPX2 protein was secreted with a highly posttranslational modification. Chondroitinase ABC treatment completely decreased the molecular mass of purified SRPX2 protein to its predicted size, whereas heparitinase, keratanase and hyaluroinidase did not. Secreted SRPX2 protein was also detected using an anti-chondroitin sulfate antibody. These results indicate that SRPX2 is a novel chondroitin sulfate proteoglycan (CSPG). Furthermore, a binding assay revealed that hepatocyte growth factor dose-dependently binds to SRPX2 protein, and a ligand-glycosaminoglycans interaction was speculated to be likely in proteoglycans. Regarding its molecular architecture, SRPX2 has sushi repeat modules similar to four other CSPGs/lecticans; however, the molecular architecture of SRPX2 seems to be quite different from that of the lecticans. Taken together, we found that SRPX2 is a novel CSPG that is overexpressed in gastrointestinal cancer cells. Our findings provide key glycobiological insight into SRPX2 in cancer cells and demonstrate that SRPX2 is a new member of the cancer-related proteoglycan family. 相似文献
15.
N B Schwartz 《The Journal of biological chemistry》1977,252(18):6316-6321
Monolayer cultures of embryonic chick chondrocytes were incubated with 35SO42- in the presence and absence of 1.0 mM p-nitrophenyl-beta-d-xyloside for 2 days. The relative amounts of chondroitin sulfate proteoglycan and free polysaccharide chains were measured following gel filtration on Sephadex G-200. Synthesis of beta-xyloside-initiated polysaccharide chains was accompanied by an apparent decrease in chondroitin sulfate proteoglycan production by the treated cultures. When levels of cartilage-specific core protein were determined by a radioimmunoassay, similar amounts of core protein were found in both beta-xyloside and control cultures, indicating that decreased synthesis of core protein is not responsible for the observed decrease in chondroitin sulfate proteoglycan production. Activity levels of the chain-initiating glycosyltransferases (UDP-D-xylose: core protein xylosyltransferase and UDP-D-galactose:D-xylose galactosyltransferase) as well as the extent of xylosylation of core protein were found to be similar in cell extracts from both culture types. Furthermore, beta-xylosides did not inhibit the xylosyltransferase reaction in cell-free studies. In contrast, the beta-xylosides effectively competed with several galactose acceptors, including an enzymatically synthesized xylosylated core protein acceptor, in the first galactosyltransferase reaction. 相似文献
16.
17.
Synthesis of chondroitin sulfate (ChS) with well-defined structure was achieved for the first time by hyaluronidase-catalyzed polymerization. N-Acetylchondrosine (GlcAbeta(1-->3)GalNAc) oxazoline derivatives sulfated at C4 (1a), C6 (1b), and both C4 and C6 (1c) in the GalNAc unit were synthesized as transition state analogue substrate monomers for hyaluronidase (HAase) catalysis. Compound 1a was effectively polymerized by the enzyme, giving rise to synthetic ChS sulfated perfectly at the C4 position in all N-acetylgalactosamine units (Ch4S, 2a) in good yields. Molecular weights (Mn) of 2a ranged from 4000 to 18,400, which were controlled by varying reaction conditions. Compounds 1b and 1c were not catalyzed by the enzyme, affording the corresponding disaccharides through the oxazoline ring-opening without formation of polysaccharides. 相似文献
18.
19.