首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Activation of phospholipase D by chemotactic peptide in HL-60 granulocytes   总被引:17,自引:0,他引:17  
Activation of phospholipase D (PLD) has been investigated in dimethylsulfoxide differentiated HL-60 granulocytes labeled in endogenous 1-0-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl-PC) by incubation with [3H]alkyl-lysoPC. Stimulation of these labeled cells with the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP), induces rapid generation of [3H]phosphatidic acid (PA) and slower formation of [3H]diglyceride, suggesting hydrolysis of alkyl-PC by PLD. A unique feature of PLD is its ability to transfer the phosphatidyl moiety of phospholipids to alcohols (transphosphatidylation). This characteristic has been exploited to identify PLD activity. For example, when ethanol is present during stimulation of the HL-60 cells, [3H]phosphatidylethanol (PEt) is formed with a concomitant decrease in [3H]PA. Cells incubated with [32P]orthophosphate to label the terminal phosphate of ATP do not incorporate 32P into PEt, consistent with the [3H]PEt not being synthesized from [3H]diglyceride. In contrast, [3H]PA arises from both PLD and diglyceride kinase activities. Furthermore, PEt synthesis closely parallels PA formation and both are inhibited by an fMLP receptor antagonist, suggesting that both PA and PEt are derived from agonist-stimulated PLD action. These observations are consistent with phospholipase D-catalyzed breakdown of alkyl-PC in fMLP- stimulated granulocytes.  相似文献   

2.
Recently it was reported that tumor-promoting phorbol esters stimulate the production of phosphatidylethanol (PEt) in lymphocytes through the activation of phospholipase D (PLD). However, it remains unclear whether this activation is mediated through protein kinase (PKC). The study reported here shows that tumor promoters 12-0-tetradecanoylphorbol-13-acetate (TPA), phorbol dibutyrate (PDBU), 12-deoxyphorbol-13-phenylacetate (DOPP), 12-deoxyphorbol-13-phenylacetate-20-acetate (DOPPA) and mezerin activated PLD, as measured by the formation of PEt, whereas Concanavalin A (ConA) had no effect. Inhibitors of PKC, sphingosine (2 x 10(-6) M - 5 x 10(-6) M), H-7, HA1004 (5 x 10(-7) - 5 x 10(-6) M) and K252a (1 x 10(-7) - 1 x 10(-6) M) failed to block the PEt synthesis induced by TPA. In fact, sphingosine increased it. Other PKC activators, 1-oleoyl-2-acetylglycerol (OAG) and dioctanoylglycerol (DiC8) had no effect on lymphocyte PLD activity. Analysis of the phospholipid contents after stimulation by TPA showed that only phosphatidylcholine (PC) was significantly decreased. Interestingly, TPA activated PLD in intact cells but not in lysates or subcellular fractions. These observations suggest that stimulation of PLD-catalyzed PEt synthesis by TPA is not solely mediated through PKC activation.  相似文献   

3.
Occupancy of chemotactic peptide receptors leads to rapid initiation of phospholipase D (PLD) activity in intact dimethylsulfoxide-differentiated HL-60 granulocytes (Pai, J.-K, Siegel, M.I., Egan, R.W., and Billah, M.M. (1988) J. Biol. Chem. 263, 12472). To gain further insight into the activation mechanisms, PLD has been studied in cell lysates from HL-60 granulocytes, using 1-0-alkyl-2-oleoyl-[32P]phosphatidylcholine (alkyl-[32P]PC), 1-0-[3H]alkyl-2-oleoyl-phosphatidylcholine [( 3H]alkyl-PC) and [14C]arachidonyl-phospholipids as substrates. In the presence of Ca2+ and GTP gamma S, post-nuclear homogenates degrade alkyl-[32P]PC to produce 1-0-alkyl-[32P]phosphatidic acid (alkyl-[32P]-PA), and in the presence of ethanol, also 1-0-alkyl-[32P]phosphatidylethanol (alkyl-[32P]PEt). By comparing the 3H/32P ratios of PA and PEt to that of PC, it is concluded that PA and PEt are formed exclusively by a PLD that catalyzes both hydrolysis and transphosphatidylation between PC and ethanol. Furthermore, PC containing either ester- or ether-linkage at the sn-1 position is degraded in preference to phosphatidylethanolamine and phosphatidylinositol by PLD in HL-60 cell homogenates. It is concluded that HL-60 granulocytes contain a PC-specific PLD that requires both Ca2+ and GTP for activation.  相似文献   

4.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) (0.1 nM) down-modulates its receptor in IL-3/GM-CSF dependent M-07e cells, in KG-1 cells and normal granulocytes, whereas phorbol esters 12-O-tetradecanoylphorbol-13-acetate (TPA) (2 nM) down-modulates the GM-CSF receptor in M-07e cells and granulocytes but not in KG-1 cells. As data analysis shows by nonlinear regression, the decreased binding ability depends on a reduction of the binding sites with no significant change of their dissociation constant. To gain insight into the mechanisms involved in the GM-CSF receptor regulation, we investigated the role of protein kinase C (PKC). GM-CSF, unlike TPA, was unable to activate PKC in all the cells studied. Moreover, unlike TPA, GM-CSF was still able to down-modulate its receptor in cells where PKC was inhibited by 1-(5-isoquinolonesulphonyl)-2-methylpiperazine (H7) and staurosporine or in cells where PKC was exhausted by prolonged incubation with 1 microM TPA. Finally, the receptor re-expression rate was accelerated by protein kinases inhibitors. These results, taken together, indicate the presence of a PKC-dependent and -independent down-modulation mechanism and a negative role of the endogeneous protein kinases in GM-CSF receptor re-expression.  相似文献   

5.
The rapid production of phosphatidic acid following receptor stimulation has been demonstrated in a wide range of mammalian cells. Virtually every cell uses phosphatidylcholine as substrate to produce phosphatidic acid in a controlled reaction catalyzed by specific PLD isoforms. Considerable effort has been directed at studying the regulation of PLD activities and subsequent work has characterized a family of proteins including PLD1 and PLD2. Whereas both PLD enzymes are dependent on phosphatidylinositol 4, 5-bisphosphate for activity only the PLD1 isoform was strongly stimulated by the small GTPases ARF and RhoA and by protein kinase Calpha as well. A role for tyrosine kinase activities in the membrane recruitment of small GTPases, in the synthesis of phosphatidylinositol 4,5-bisphosphate and tyrosine phosphorylation of PLD1 and PLD2 has been uncovered. However, it still not clear exactly how tyrosine phosphorylation of proteins contributes to PLD activation in cells. Here we review the data linking tyrosine phosphorylation of proteins to the activation of PLD and describe recent finding on the sites and possible mechanisms of action of tyrosine kinases in receptor-mediated PLD activation. Finally, a model illustrating the potential complex interplay linking these signaling events with the activation of PLD is presented.  相似文献   

6.
The rapid production of phosphatidic acid following receptor stimulation has been demonstrated in a wide range of mammalian cells. Virtually every cell uses phosphatidylcholine as substrate to produce phosphatidic acid in a controlled reaction catalyzed by specific PLD isoforms. Considerable effort has been directed at studying the regulation of PLD activities and subsequent work has characterized a family of proteins including PLD1 and PLD2. Whereas both PLD enzymes are dependent on phosphatidylinositol 4,5-bisphosphate for activity only the PLD1 isoform was strongly stimulated by the small GTPases ARF and RhoA and by protein kinase Cα as well. A role for tyrosine kinase activities in the membrane recruitment of small GTPases, in the synthesis of phosphatidylinositol 4,5-bisphosphate and tyrosine phosphorylation of PLD1 and PLD2 has been uncovered. However, it still not clear exactly how tyrosine phosphorylation of proteins contributes to PLD activation in cells. Here we review the data linking tyrosine phosphorylation of proteins to the activation of PLD and describe recent finding on the sites and possible mechanisms of action of tyrosine kinases in receptor-mediated PLD activation. Finally, a model illustrating the potential complex interplay linking these signaling events with the activation of PLD is presented.  相似文献   

7.
Growth factors activate phospholipases, causing the generation of diverse lipid metabolites with second messenger function. Among them, the phosphatidylcholine-preferring phospholipase D (PLD) has attracted great interest, since in addition to the transient activation by growth factors stimulation, it is constitutively activated in some of the src- and ras-transformed cells investigated. To establish further the functional relationship of ras oncogenes with PLD, we have investigated its mechanism of regulation. Growth factors such as PDGF or FGF activate the PC-PLD enzyme by a common, PKC-dependent mechanism. By contrast, ras oncogenes activate the PC-PLD enzyme by a PKC-independent mechanism. These results suggest the existence of at least two mechanisms for PLD activation, and ras oncogenes contribute to one of them. © 1996 Wiley-Liss, Inc.  相似文献   

8.
In neonatal rat islet cells prelabelled with [14C-methyl] choline, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate rapidly activated a phospholipase D-like mechanism as suggested by the accumulation in cells and medium of choline (but not of phosphorylcholine or glycerophosphorylcholine, markers for phospholipase C and phospholipase A2 action on phosphatidylcholine). This finding was confirmed by a rise in phosphatidic acid (but not diglyceride or arachidonic acid) in fatty acid-labelled cells. Phospholipase D was also activated by ionomycin or sodium fluoride; however, this was accompanied by parallel increases in diglyceride, monoacylglycerol and arachidonic acid in the absence of phosphorylcholine generation, suggesting that these agents also activated a phospholipase C-diglyceride lipase pathway acting on non-choline-containing phosphoglycerides (presumably phosphoinositides). In conjunction with our recent demonstration of insulinotropic effects of phosphatidic acid (M. Dunlop and R. Larkins, Diabetes, in press), our findings suggest for the first time a possible role for phospholipase D activation in the stimulation of insulin release and may imply a novel site of action for phorbol esters in the regulation of exocytosis.  相似文献   

9.
Exposure of pig epidermis to adenylate cyclase stimulators results in receptor-specific desensitization. We investigated the nature of the agonist-induced desensitization, which was compared with the phorbol ester-induced, receptor-nonspecific desensitization. Both phorbol ester-induced desensitization and the agonist-induced desensitization were accompanied by an increase in forskolin- and cholera toxin-induced cyclic AMP accumulations. The magnitude of the increase in the agonist-induced desensitization was parallel to the degree of the initial cyclic AMP accumulation; histamine and adenosine, which increase more cyclic AMP than epinephrine, resulted in a more marked increase in forskolin- and cholera toxin-induced cyclic AMP accumulations. Similarly, epidermis desensitized to multiple receptors revealed more marked forskolin- and cholera toxin-induced cyclic AMP accumulations than epidermis desensitized to a single receptor. In contrast to the phorbol ester-induced desensitization, agonist-induced desensitization was not affected by the protein kinase C inhibitors H-7 and staurosporin. Further, agonist-induced desensitization was still inducible in phorbol ester-desensitized epidermis and vice versa. In contrast to the agonist-induced desensitization, which is accompanied by the preceding adenylate cyclase stimulation, no evidence for the stimulation of the adenylate cyclase during phorbol ester treatment was obtained. Neither agonist-induced desensitization nor phorbol ester-induced desensitization affected the content of inhibitory guanine nucleotide binding protein of the epidermis, which was monitored by the pertussis toxin (IAP)-catalyzed ADP ribosylation reaction. Our results indicate that agonist-induced desensitization and the phorbol ester-induced desensitization are independent of each other. Although both processes are characterized by increased forskolin- and toxin-induced cyclic AMP accumulations, the former is accompanied by initial cyclic AMP accumulation; the latter is not.  相似文献   

10.
In previous studies we determined that protein kinase C (PKC) and calcium are important intracellular regulators of neuronal angiotensin II (Ang II) binding sites. In the present study we investigated the effects of the protein kinase C (PKC) agonist phorbol esters (PE) and also a calcium ionophore (A23187) on the specific binding of [125I]Ang II to brain synaptosomes prepared from rats of different ages. The rationale was to determine whether the larae changes in the level of brain Ang II specific binding observed in different age rats are due to changes in the regulation of these sites by PKC or by calcium. The present data indicate no qualitative differences in the effects of PE or A23187 on [125I]Ang II specific binding to hypothalamic or brain stem synaptosomes, from either 2–5 or 70-day-old rats, i.e. the active PE TPA increased while A23187 decreased Ang II binding in all situations. Thus, the dramatic differences in brain Ang II specific binding seen with age appear not to be due to changes in regulation by PKC or calcium.  相似文献   

11.
Primary cultures of rat cortical astrocytes express phospholipase D (PLD) isoforms 1 and 2 as determined by RT-PCR and Western blot. Basal PLD activity was strongly (10-fold) increased by 4beta-phorbol-12beta,13alpha-dibutyrate (PDB) (EC(50): 56 nM), an effect which was inhibited by Ro 31-8220 (0.1-1 microM), an inhibitor of protein kinase C (PKC), and by brefeldin A (10-100 microg/ml), an inhibitor of ADP-ribosylating factor (ARF) activation. Pretreatment of the cultures with Clostridium difficile toxin B-10463 (0.1-1 ng/ml), which inactivates small G proteins of the Rho family, led to a breakdown of the astroglial cytoskeleton; concomitantly, PLD activation by PDB was reduced by up to 50%. In contrast, inactivation of proteins of the Ras family by Clostridium sordellii lethal toxin 1522 did not affect PLD activation. In parallel experiments, serum-induced PLD activation was sensitive to brefeldin A, but not to Ro 31-8220 and not to clostridial toxins. We conclude that, in astrocytes, the PLD isoform which is activated by phorbol ester requires PKC, ARF and Rho proteins for full activity and probably represents PLD1.  相似文献   

12.
In nearly all mammalian cells and tissues examined, protein kinase C (PKC) has been shown to serve as a major regulator of a phosphatidylcholine-specific phospholipase D (PLD) activity, At least 12 distinct isoforms of PKC have been described so far; of these enzymes only the α- and β-isoform were found to regulate PLD activity, While the mechanism of this regulation has remained unknown, available evidence suggests that both phosphorylating and non-phosphorylating mechanisms may be involved. A phosphatidylcholine-specific PLD activity was recently purified from pig lung, but its possible regulation by PKC has not been reported yet. Several cell types and tissues appear to express additional forms of PLD which can hydrolyze either phosphatidylethanolamine or phosphatidylinositol. It has also been reported that at least one form of PLD can be activated by oncogenes, but not by PKC activators, Similar to activated PKC, some of the primary and secondary products of PLD-mediated phospholipid hydrolysis, including phosphatidic acid, 1,2-diacylglycerol, choline phosphate and ethanolamine, also exhibit mitogenic/co-mitogenic effects in cultured cells. Furthermore, both the PLD and PKC systems have been implicated in the regulation of vesicle transport and exocytosis. Recently the PLD enzyme has been cloned and the tools of molecular biology to study its biological roles will soon be available. Using specific inhibitors of growth regulating signals and vesicle transport, so far no convincing evidence has been reported to support the role of PLD in the mediation of any of the above cellular effects of activated PKC.  相似文献   

13.
We have studied the activation of interleukin 1 (IL 1)-dependent and IL 1-independent T cell lines, specifically their capacity to produce and secrete interleukin 2 (IL 2). The IL 1-dependent T cell lymphoma LBRM33-1A5.47, which requires phytohemagglutinin (PHA) and IL 1 to produce IL 2, was compared with the IL 1-independent T cell lymphoma LBRM33-5A4 and T cell hybridomas DO-11.10/S4.4 and 3DO-54.8. The latter hybridomas do not require exogenous IL 1 to produce IL 2 in response to mitogens or ovalbumin (OVA)/I-Ad. Even though IL 1 is not required by these IL 1-independent T cell lines, we tested whether IL 1 could modulate their response but found no significant effect of exogenous IL 1. We then studied the activation of these T cell lines by the calcium ionophore A23187 and phorbol myristate acetate (PMA). In the case of the IL 1-dependent line LBRM33-1A5.47, there was a strong response when both A23187 and PMA were used simultaneously. We subsequently found that A23187 can replace PHA, and PMA can replace IL 1 in the activation of this cell line to IL 2 production. These observations suggest that the signal(s) provided by PHA and IL 1 involve at least in part a calcium flux, and activation of protein kinase C. Parallel experiments with the use of the IL 1-independent T cell lines showed a strong response to both agents when used simultaneously. A modest response observed to A23187 alone was always enhanced by the addition of PMA. No response was observed to PMA alone. IL 1-rich P388D1 supernatant could replace the enhancing effect of PMA in the response of the IL 1-independent T cell lines. We suggest that the activating signals provided by A23187 and PMA are at least part of the sequence of events that lead to production of IL 2 in either IL 1-dependent or IL 1-independent T cell lines. In IL 1-independent T cell lines, however, both of the activating signals studied may be delivered through stimulation of the Antigen-MHC T cell receptor.  相似文献   

14.
15.
It has been hypothesized on the basis of studies on BC3H-1 myocytes that diacylglycerol generation with activation of protein kinase C (PKC) is involved in the stimulation of glucose transport in muscle by insulin (Standaert, M. L., Farese, R. V., Cooper, R. D., and Pollet, R. J. (1988) J. Biol. Chem. 263, 8696-8705). In the present study, we used the rat epitrochlearis muscle to evaluate the possibility that PKC activity mediates the stimulation of glucose transport by insulin in mammalian skeletal muscle. Phospholipase C from Clostridium perfringens (PLC-Cp), which generates diacylglycerol from membrane phospholipids, and 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) induced increases in glucose transport activity (assessed using 3-O-methylglucose transport) that were approximately 80 and approximately 20% as great, respectively, as that induced by a maximal insulin stimulus. PLC-Cp and PMA both caused a approximately 2-fold increase in membrane-associated PKC activity. In contrast, insulin did not affect PKC activity. These findings argue against a role of diacylglycerol-mediated PKC activation in the stimulation of skeletal muscle glucose transport by insulin. They also show that the BC3H-1 myocyte is not a good model for studying regulation of glucose transport in skeletal muscle. Neither the submaximal nor maximal effects of PLC-Cp and insulin on glucose transport were additive, suggesting that PLC-Cp interferes with insulin action. The maximal effects of PLC-Cp and hypoxia or muscle contractions were also not additive. However, the submaximal effects of hypoxia and PLC-Cp were completely additive. These findings raise the possibility that PLC-Cp stimulates glucose transport by the exercise/hypoxia-activated, not the insulin-activated, pathway in skeletal muscle. Exposure to PLC-Cp activated glycogen phosphorylase and potentiated twitch tension in response to electrical stimulation, providing evidence that PLC-Cp increases cytoplasmic Ca2+ concentration. Dantrolene, an inhibitor of Ca2+ release from the sarcoplasmic reticulum, completely blocked both the activation of phosphorylase and the stimulation of glucose transport by PLC-Cp. These findings provide evidence that an increase in cytoplasmic Ca2+ concentration is involved in the activation of glucose transport in skeletal muscle by PLC-Cp.  相似文献   

16.
Calcium ionophore, A23187, is known to be a comitogen, but it activates a suicide process characterized by DNA fragmentation at linker regions in mouse immature thymocytes. It did not induce DNA fragmentation in T lymphocytes prepared from lymph node and spleen cells. Induction of DNA fragmentation by A23187 depends on protein phosphorylation and synthesis of mRNA and protein, because an inhibitor of protein kinase, 1-(5-isoquinolinesulfonyl)-2-methyl-piperazine dihydrochloride (H-7), actinomycin D, and cycloheximide, respectively, inhibits the DNA fragmentation and cell death. Studies adding the inhibitors at various times show that protein phosphorylation and mRNA synthesis occur within a few hours after incubation with A23187 followed by the protein synthesis responsible for inducing DNA fragmentation. Phorbol esters, 12-O-tetradecanoyl 13-acetate (TPA) and phorbol 12,13-dibutyrate (PBD), which are capable of activating protein kinase C, also induced similar DNA fragmentation in immature thymocytes, followed by cell death. PBD committed the suicide process after 6 h of incubation, because the DNA fragmentation above the control level was not induced when PDB was removed from the medium before 6 h of incubation. A23187 or a phorbol ester alone induced DNA fragmentation followed by cell death, whereas the addition of TPA at low concentration inhibited the DNA fragmentation induced by A23187 accompanied with an increase in DNA synthesis. The result suggests that TPA switched a suicide process induced by A23187 to an opposite process: stimulation of DNA synthesis. Physiologic factors and mechanisms which regulate cell proliferation and death in the thymus are not known at present, but the signals by protein kinases and calcium ions may regulate both cell proliferation and death, independently, synergistically or antagonistically.  相似文献   

17.
Phorbol 12-myristate 13-acetate (100 nM), a potent protein kinase C and macrophage activator, has a biphasic affect on 25(OH)D3-1 alpha-hydroxylase activity in synovial fluid macrophages from arthritis patients. After 5 h, 1 alpha, 25(OH)D3 synthesis fell from 5.2 +/- 0.1 to 1.6 +/- 0.2 pmol/h per 10(6) cells, however, after 24 h and 48 h, synthesis increased to 17.4 +/- 0.3 and 22.3 +/- 1.4 pmol/h per 10(6) cells, respectively. Although an independent short-term mechanism is suggested, protein kinase C may promote macrophage activation, thus increasing long-term 25(OH)D3-1 alpha-hydroxylase expression. Intracellular calcium and cAMP are unlikely to activate the enzyme, since 0.1 microM of the calcium ionophore, A23187, and 1 mM dibutyryl-cAMP inhibited synthesis by 87% and 79%, respectively, after 24 h.  相似文献   

18.
1. The rate of 45Ca2+ efflux from prelabelled rat islets of Langerhans was stimulated by carbachol in a dose-dependent manner. 2. Significant stimulation occurred in the presence of 0.2 microM-carbachol; the response was half-maximal at 3-5 microM and was maximal at 20 microM. 3. Stimulation of 45Ca2+ efflux by carbachol was not dependent on the presence of extracellular Ca2+ and was enhanced in Ca2+-depleted medium. 4. Stimulation of 45Ca2+ efflux by 5 microM-carbachol occurred independently of any change in [3H]arachidonic acid release in prelabelled islets, and probably reflected generation of inositol trisphosphate in the cells. 5. The amphipathic peptide melittin failed to increase islet-cell 45Ca2+ efflux at a concentration of 1 microgram/ml, and caused only a modest increase at 10 micrograms/ml. 6. Despite its failure to increase 45Ca2+ efflux, melittin at 1 microgram/ml caused a marked enhancement of 3H release from islets that had been prelabelled with [3H]arachidonic acid. 7. The stimulation of 3H efflux caused by melittin correlated with a dose-dependent increase in the unesterified [3H]arachidonic acid content of prelabelled islets and with a corresponding decrease in the extent of labelling of islet phospholipids. 8. Combined addition of melittin (1 microgram/ml) and 5 microM-carbachol to perifused islets failed to augment 45Ca2+ efflux relative to that elicited by carbachol alone. 9. The data indicate that melittin promotes an increase in arachidonic acid availability in intact rat islets. They do not, however, support the proposal that this can either directly reproduce or subsequently modify the extent of intracellular Ca2+ mobilization induced by agents that cause an increase in inositol trisphosphate.  相似文献   

19.
Ethanol causes a transient activation of the phosphoinositide-specific phospholipase C in intact hepatocytes and mimics the action of receptor-mediated agonists [Hoek, Thomas, Rubin & Rubin (1987) J. Biol. Chem. 262, 682-691]. Preincubation of the hepatocytes with phorbol esters which activate protein kinase C prevented this effect of ethanol: phorbol ester treatment inhibited the ethanol-induced phosphorylase activation, the increase in intracellular free Ca2+ concentrations measured in quin 2-loaded hepatocytes, and the changes in concentrations of inositol phosphates, phosphoinositides and phosphatidic acid. Several lines of evidence indicate that these effects were mediated by protein kinase C. Phorbol esters acted in a concentration range where they activate protein kinase C; phorbol esters that do not activate protein kinase C were not effective in inhibiting the effects of ethanol. The permeant diacylglycerol oleoyl-acetylglycerol also inhibited the effects of ethanol, but other diacylglycerols were not effective in the intact cells. The inhibition of ethanol-induced Ca2+ mobilization by phorbol esters was prevented by preincubating the cells with the protein kinase C inhibitors 1-(5-isoquinolinesulphonyl)-2-methylpiperazine (H7) and sphingosine. H7 also enhanced the Ca2+ mobilization induced by ethanol in cells that were not pretreated with phorbol esters, indicating that the transient nature of the ethanol-induced Ca2+ mobilization may be due to an activation of protein kinase C caused by the accumulation of diacylglycerol. These data support a model whereby ethanol activates the phosphoinositide-specific phospholipase C, possibly by affecting receptor-G-protein-phospholipase C interactions in the membrane.  相似文献   

20.
To clarify the mechanism of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced macrophage-like differentiation of HL-60 cells, we investigated the correlation between the effects of protein kinase C (PKC) inhibitors on the induction of markers of TPA-induced differentiation and those on suggested critical steps of the differentiation. H-7, sphingosine, and trifluoroperazine significantly suppressed TPA-induced cell adhesion but their effects on the induction of acid phosphatase and nonspecific esterase differed among the inhibitors. The three inhibitors failed to affect on TPA-induced annexin I expression. In contrast, staurosporine markedly suppressed the induction of all these markers. The effects of the inhibitors on some suggested critical steps of the differentiation, a rapid phosphorylation of specific proteins, a rapid membrane association of PKC, and down-regulation of PKC at 18 h after addition of TPA, were not correlated with those on the differentiation marker induction. Only the effect of the inhibitors on up-regulation of PKC-alpha was closely correlated with TPA-induced annexin I expression; staurosporine inhibited up-regulation of PKC-alpha but other inhibitors did not similarly affect the induction of annexin I expression. These results suggest that PKC-alpha is intimately related to macrophage-like differentiation of HL-60 cells by TPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号