首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly sensitive, specific, and robust method for the analysis of oxidized metabolites of linoleic acid (LA), arachidonic acid (AA), and docosahexaenoic acid (DHA) was developed using charge-switch derivatization, liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI MS/MS) with selected reaction monitoring (SRM) and quantitation by high mass accuracy analysis of product ions, thereby minimizing interferences from contaminating ions. Charge-switch derivatization of LA, AA, and DHA metabolites with N-(4-aminomethylphenyl)-pyridinium resulted in a 10- to 30-fold increase in ionization efficiency. Improved quantitation was accompanied by decreased false positive interferences through accurate mass measurements of diagnostic product ions during SRM transitions by ratiometric comparisons with stable isotope internal standards. The limits of quantitation were between 0.05 and 6.0 pg, with a dynamic range of 3 to 4 orders of magnitude (correlation coefficient r> 0.99). This approach was used to quantitate the levels of representative fatty acid metabolites from wild-type (WT) and iPLA2γ–/– mouse liver identifying the role of iPLA2γ in hepatic lipid second messenger production. Collectively, these results demonstrate the utility of high mass accuracy product ion analysis in conjunction with charge-switch derivatization for the highly specific quantitation of diminutive amounts of LA, AA, and DHA metabolites in biologic systems.  相似文献   

2.
Ethylene glycol poisoning is a common clinical problem and identification as well as quantitation of ethylene glycol in serum is important for medical and legal purposes. Most investigators described determination of ethylene glycol by gas chromatography without derivatization or derivatives forming a molecular ion <200. We describe a novel derivatization technique of ethylene glycol using perfluorooctanoyl chloride, after extraction from serum using acetone. This derivative has a molecular mass of 854 and produces a base peak at m/z 441 and other diagnostic strong peaks for unambiguous identification. Moreover, this derivative is less volatile and is free from interferences from endogenous serum components. Quantitation can be achieved by using 1,4-butanediol as an internal standard. The assay showed within-run and between-run precision of 7.2% and 8.0%, respectively, and linearity over the serum ethylene glycol concentration range 70–2240 μg/ml with a detection limit of 5 μg/ml.  相似文献   

3.
This article presents a novel methodology for the analysis of ethanolamine glycerophospholipid (PE) and lysoPE molecular species directly from lipid extracts of biological samples. Through brief treatment of lipid extracts with fluorenylmethoxylcarbonyl (Fmoc) chloride, PE and lysoPE species were selectively derivatized to their corresponding carbamates. The reaction solution was infused directly into the ion source of an electrospray ionization mass spectrometer after appropriate dilution. The facile loss of the Fmoc moiety dramatically enhanced the analytic sensitivity and allowed the identification and quantitation of low-abundance molecular species. A detection limitation of attomoles (amoles) per microliter for PE and lysoPE analysis was readily achieved using this technique (at least a 100-fold improvement from our previous method) with a >15,000-fold dynamic range. Through intrasource separation and multidimensional mass spectrometry array analysis of derivatized species, marked improvements in signal-to-noise ratio, molecular species identification, and quantitation can be realized. The procedure is both simple and effective and can be extended to analyze many other lipid classes or other cellular metabolites by adjustments in specific derivatization conditions. Thus, through judicious derivatization, a new dimension exploiting specific functional reactivities in each lipid class can be used in conjunction with shotgun lipidomics to penetrate farther into the low-abundance regime of cellular lipidomes.  相似文献   

4.
Over the last few years we have developed mass spectrometry-based approaches for selective identification of a variety of posttranslational modifications, and for sequencing the modified peptides. These methods do not involve radiolabeling or derivatization. Instead, modification-specific fragment ions are produced by collision-induced dissociation (CID) during analysis of peptides by ESMS. The formation and detection of these marker ions on-the-fly during the LC-ESMS analysis of a protein digest is a powerful technique for identifying posttranslationally modified peptides. Using the marker ion strategy in an orthogonal fashion, a precursor ion scan can detect peptides which give rise to a diagnostic fragment ion, even in an unfractionated protein digest. Once the modified peptide has been located, the appropriate precursor ion can be sequenced by tandem MS. The utility and interplay of this approach to mapping PTM is illustrated with examples that involve protein glycosylation and phosphorylation.  相似文献   

5.
MS protein identification and quantitation are key proteomic techniques in biological research. Besides identification of proteins, MS is used increasingly to characterize secondary protein modifications. This often requires trimming the analytical strategy to a specific type of modification. Direct analysis of protein modifications in proteomic samples is often hampered by the limited dynamic range of current analytical tools. Here we present a fast, sensitive, multiplexed precursor ion scanning mode--implemented on a quadrupole-TOF instrument--that allows the specific detection of any modified peptide or molecule that reveals itself by a specific fragment ion or pattern of fragment ions within a complex proteomic sample. The high mass accuracy of the TOF mass spectrometer is available for the marker ion specificity and the precursor ion mass determination. The method is compatible with chromatographic separation. Fragment ions and intact molecular ions are acquired quasi-simultaneously by continuously switching the collision energy between elevated and low levels. Using this technique many secondary modifications can be analyzed in parallel; however, the number of peptides carrying a specific modification that can be analyzed successfully is limited by the chromatographic resolution or, more generally, by the depth of the resolved time domain.  相似文献   

6.
Methodology is presented for the identification of codorphone and its metabolites in urine samples using gas chromatography mass spectrometry. The procedure focuses on the clean-up of biological samples and a derivatization technique suitable for these samples. Sep-Pak C-18 cartridges were employed in the clean-up procedure permitting the biological sample to be derivatized in a relatively small volume of reagents. The derivatization procedure incorporated a one-step trimethylsilyloxime reaction to prevent enol formation while simultaneously derivatizing free hydroxyl groups with the excess trimethylsilylimidazole present in the reaction mixture. This was followed by the addition of BSTFA directly to this reaction mixture to complete derivatization of any metabolites possessing dealkylation of the nitrogen. Using this derivatization scheme, synthetic metabolites were analyzed by gas chromatography mass spectrometry, and their mass spectra were characterized emphasizing the diagnostic fragment ions observed in the spectra. To illustrate the usefulness of this methodology, a urine sample obtained from a dog that had been dosed with codorphone was analyzed by gas chromatography mass spectrometry, and the metabolites were identified by comparison to the mass spectra of the synthetic derivatives.  相似文献   

7.
Quantitation of relative or absolute amounts of proteins by mass spectrometry can be prone to large errors. The use of MS/MS ion intensities and stable isotope labeling, which we term stable isotope labeling tandem mass spectrometry (SILT), decreases the effects of contamination from unrelated compounds. We present a software package (SILTmass) that automates protein identification and quantification by the SILT method. SILTmass has the ability to analyze the kinetics of protein turnover, in addition to relative and absolute protein quantitation. Instead of extracting chromatograms to find elution peaks, SILTmass uses only scans in which a peptide is identified and that meet an ion intensity threshold. Using only scans with identified peptides, the accuracy and precision of SILT is shown to be superior to precursor ion intensities, particularly at high or low dilutions of the isotope labeled compounds or with low amounts of protein. Using example scans, we demonstrate likely reasons for the improvements in quantitation by SILT. The appropriate use of variable modifications in peptide identification is described for measurement of protein turnover kinetics. The combination of identification with SILT facilitates quantitation without peak detection and helps to ensure the appropriate use of variable modifications for kinetics experiments.  相似文献   

8.
Ceramide (CER) is an important signaling molecule involved in a variety of cellular processes, including differentiation, cell growth, and apoptosis. Currently, different techniques are applied for CER quantitation, some of which are relatively insensitive and/or time consuming. Tandem mass spectrometry with its high selectivity and sensitivity is a very useful technique for detection of low abundant metabolites without prior purification or derivatization. In contrast to existing mass spectrometry methods, the developed electrospray tandem mass spectrometry (ESI-MS/MS) technique is capable of quantifying different CER species from crude cellular lipid extracts. The ESI-MS/MS is performed with a continuous flow injection and the use of an autosampler, resulting in a high throughput capability. The collision-induced fragmentation of CER produced, in addition to others, a characteristic fragment of m/z 264, making a precursor ion scan of 264 well suited for CER quantitation. Quantitation is achieved by use of a constant concentration of a non-naturally occurring internal standard C8-CER, together with a calibration curve established by spiking different concentrations of naturally occurring CER. The calibration curves showed linearity over a wide concentration range and sample volumes equivalent to 10 microg of cell protein corresponding to about 20, 000 fibroblasts were sufficient for CER analysis. Moreover this assay showed a detection limit at the subpicomole level. In summary, this methodology enables accurate and rapid analysis of CER from small samples without prior separation steps, thus providing a useful tool for signal transduction research.  相似文献   

9.
This report evaluates the use of a quadrupolar ion trap for quantitation in a bioanalytical laboratory. The evaluation was accomplished with the cross-validation of an LC–MS–MS quantitative method previously validated on a triple quadrupole mass spectrometer. The method was a multi-level determination of the anti-obesity drug, orlistat, in human plasma. The method has been refined previously on a triple quadrupole instrument to provide rapid sample throughput with robust reproducibility at sub-nanogram detection limits. Optimization of the method on the ion trap required improved chromatographic separation of orlistat from interfering plasma matrix components coextracted during the initial liquid–liquid extraction of plasma samples. The ion trap produces full-scan collision-induced dissociation mass spectra containing characteristic orlistat fragment ions that are useful for quantitation. Data collection on the ion trap required a precursor ion isolation width of 3.0 Da and optimal quantitative results were obtained when three fragment ions were monitored with a 1.8 Da window for each ion. Although a direct cross-validation between the ion trap and the tandem triple quadrupole mass spectrometer was not possible, quantitative results for orlistat comparable to those obtained from the triple quadrupole instrument were achieved by the ion trap with the modified method. The limit of quantitation for orlistat in plasma on the ion trap was 0.3 ng ml−1 with a linear dynamic range of 0.3 to 10 ng ml−1. Precision and accuracy varied from 4 to 15% over the quantitation range. The overall results provide an example of the utility of an ion trap in bioanalytical work.  相似文献   

10.
A method for separation and quantitation of galacturonic acid oligomers from 3 to over 25 residues in length is described. Oligomers were labeled at the reducing end with 2-aminopyridine and then analyzed by anion-exchange high-performance liquid chromatography using a sodium acetate gradient. The amount of each oligogalacturonide present was determined by comparison to the response of an internal reference oligogalacturonide over a range from 0.5 to 20 nmol per oligomer. At least 5 h of incubation in the 2-aminopyridine reagent was required to obtain maximum and oligomer length-independent derivatization. To be analyzed using this technique, oligogalacturonides must possess a reducing terminus, they should be deesterified prior to derivatization if identification of the actual galacturonide chain length is desired, and they should fall within the range of 3 to over 25 galacturonide residues per oligomer. The wide range of oligogalacturonides separable, sensitivity of detection, ease of quantitation of chromatographic data, and ability to hydrolyze the 2-aminopyridinyl group from sugars makes this technique of potential use for numerous applications ranging from simple characterization of oligogalacturonide mixtures to purification of oligomers for use in bioassays.  相似文献   

11.
Oxidative stress plays a critical role in the pathogenesis of a number of diseases. The carbonyl end products of protein oxidation are among the most commonly measured markers of oxidation in biological samples. Protein carbonyl functional groups may be derivatized with 2,4-dinitrophenylhydrazine (DNPH) to render a stable 2,4-dinitrophenylhydrazone-protein (DNP-protein) and the carbonyl contents of individual proteins then determined by two-dimensional electrophoresis followed by immunoblotting using specific anti-DNP antibodies. Unfortunately, derivatization of proteins with DNPH could affect their mass spectrometry (MS) identification. This problem can be overcome using nontreated samples for protein identification. Nevertheless, derivatization could also affect their mobility, which might be solved by performing the derivatization step after the initial electrophoresis. Here, we compare two-dimensional redox proteome maps of mouse cerebellum acquired by performing the DNPH derivatization step before or after electrophoresis and detect differences in protein patterns. When the same approach is used for protein detection and identification, both methods were found to be useful to identify carbonylated proteins. However, whereas pre-DNPH derivatized proteins were successfully analyzed, high background staining complicated the analysis when the DNPH reaction was performed after transblotting. Comparative data on protein identification using both methods are provided.  相似文献   

12.
Teal PE 《Peptides》2002,23(4):663-669
Retrocerebral complexes (RCs) were isolated from adult females of the moths Heliothis virescens and Manduca sexta. Different homologs of juvenile hormone (JH) produced by the isolated RCs were identified and amounts measured by capillary gas chromatography-chemical ionization (isobutane)-mass spectroscopy. Only JH I, II and III were identified. Incubation of RCs from both species in media containing acetate, but no propionate, induced production of approximately equal amounts of JH II and JH III, but the amount of JH I present was very low in all samples. Incubation of RCs with synthetic Manduca sexta allatotropin stimulated significant increases in production of all three homologs but increases in JH I and JH II were greater than those for JH III. The effect of allatotropin was mimicked by addition of propionate to the medium, which indicated that allatotropin increased supply of acetyl- and propionyl-CoA precursors. Incubation of tissue from H. virescens females during the first 24 h after eclosion with synthetic Manduca sexta allatostatin did not reduce production of JH. However, incubation of tissue from 3-day-old females with allatostatin significantly reduced production of JH. Similarly, incubation of tissue from H. virescens females during the first 24 h after eclosion with both allatotropin and allatostatin did not increase JH over the amount present in extracts from tissue incubated without the neuropeptides, indicating that allatostatin negated the action of allatotropin. Incubation of tissue from H. virescens females with allatostatin plus farnesol or JH III acid resulted in significant production of JH III, but neither JH I nor JH II was detected. These findings indicated that allatostatin acts prior to formation of the sesquiterpene alcohol precursors of JH.  相似文献   

13.
Normalized spectral index quantification was recently presented as an accurate method of label‐free quantitation, which improved spectral counting by incorporating the intensities of peptide MS/MS fragment ions into the calculation of protein abundance. We present SINQ, a tool implementing this method within the framework of existing analysis software, our freely available central proteomics facilities pipeline (CPFP). We demonstrate, using data sets of protein standards acquired on a variety of mass spectrometers, that SINQ can rapidly provide useful estimates of the absolute quantity of proteins present in a medium‐complexity sample. In addition, relative quantitation of standard proteins spiked into a complex lysate background and run without pre‐fractionation produces accurate results at amounts above 1 fmol on column. We compare quantitation performance to various precursor intensity‐ and identification‐based methods, including the normalized spectral abundance factor (NSAF), exponentially modified protein abundance index (emPAI), MaxQuant, and Progenesis LC‐MS. We anticipate that the SINQ tool will be a useful asset for core facilities and individual laboratories that wish to produce quantitative MS data, but lack the necessary manpower to routinely support more complicated software workflows. SINQ is freely available to obtain and use as part of the central proteomics facilities pipeline, which is released under an open‐source license.  相似文献   

14.
We introduce a new multistep mass tagging technique and show its utility for reducing sample complexity when coupled with two-dimensional liquid chromatography/nano-electrospray ionization ion trap mass spectrometry (2D LC/nano ESI-MS). Solid-phase mass tagging reagents were used to identify and obtain relative quantitation of membrane proteins from two established breast cancer cell lines, BT474 and MCF7. The results presented in this study show that sample complexity can be reduced with corresponding increases in protein identification and quantitation.  相似文献   

15.
By using shotgun lipidomics based on the separation of lipid classes in the electrospray ion source (intrasource separation) and two-dimensional (2D) MS techniques (Han, X., and R. W. Gross. 2004. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of the cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev. First published on June 18, 2004; doi: 10.1002/mas.20023, In press), individual molecular species of most major and many minor lipid classes can be quantitated directly from biological lipid extracts. Herein, we extended shotgun lipidomics to the characterization and quantitation of cerebroside molecular species in biological samples. By exploiting the differential fragmentation patterns of chlorine adducts using electrospray ionization (ESI) tandem mass spectrometry, hydroxy and nonhydroxy cerebroside species are readily identified. The hexose (either galactose or glucose) moiety of a cerebroside species can be distinguished by examination of the peak intensity ratio of its product ions at m/z 179 and 89 (i.e., 0.74 +/- 0.10 and 4.8 +/- 0.7 for galactose- and glucose-containing cerebroside species, respectively). Quantitation of cerebroside molecular species (as little as 10 fmol) from chloroform extracts of brain tissue samples was directly conducted by 2D ESI/MS after correction for differences in (13)C-isotopomer intensities. This method was demonstrated to have a greater than 1,000-fold linear dynamic range in the low concentration region; therefore, it should have a wide range of applications in studies of the cellular sphingolipid lipidome.  相似文献   

16.
Presented here is a stable isotope dilution technique for determining cortisol production rate (CPR). The method involves extraction and derivatization of cortisol isoforms from serum (0.5 ml), separation of derivatives by gas chromatography, and detection by using negative ion chemical ionization mass spectrometry. This method provides 50-100-fold greater sensitivity than positive ion mass spectrometry and allows for estimations of cortisol production rate with the use of small amounts of pooled serum, even in the presence of high concentrations of lipophilic contaminants. The area under the curve for the total selected ion chromatogram of fluoroacyl derivatives of cortisol (d0, m/z 782) and deuterated cortisol (d3, m/z 785) were used to determine the isotopic dilution ratio in three types of samples: 1) standards: d0/d3 ratios ranging from 1 to 8%; 2) controls: d3-cortisol added to serum with known cortisol concentration; 3) subjects: 24-h pooled serum samples (q 30 min over 24 h) from healthy children (male 10-13 years; female 7-11 years) receiving continuous infusions of d3-cortisol at 2-4% of their estimated CPR. Recovery after the solid phase extraction and derivatization process was >90%, as determined by thin-layer chromatography. Expected versus measured ratios for d3/d0 in standards and serum controls were highly correlated (r2(standard) = 0.99; r2(control) = 0.99) over a wide range of d3-cortisol enrichment (1.0-10.0%). Mean 24-h CPRs were 4.8 +/- 0.6 mg/m2/24 h (mean +/- SEM, n = 7) in male children and 4.4 +/- 0.5 mg/m2/24 h in female children (n = 4). These CPR values are lower than those derived by radio tracer methods, but are in agreement with previous isotopic dilution studies. This technique is an important tool for assessing CPRs in a wide range of disease states affecting cortisol production.  相似文献   

17.
A specific and sensitive method for the identification and simultaneous quantitation by mass fragmentography of 10 of the amino acids present in soil has been developed. The technique uses a computer-driven quadrupole mass spectrometer, and a commercial preparation of deuterated amino acids is used as internal standard for purposes of quantitation. The results obtained are comparable with those from an amino acid analyser. In the quadrupole mass spectrometer-computer system used, up to 25 preselected ions may be monitored sequentially. This allows a maximum of 12 different amino acids (one specific ion in each of the undeuterated and deuterated amino acid spectra) to be quantitated. The method is relatively rapid (analysis time of approximately 1 hr) and is capable of the quantitation of nanogram quantities of amino acids.  相似文献   

18.

Background

The juvenile hormones (JHs) are sesquiterpenoid compounds that play a central role in insect reproduction, development and behavior. The lipophilic nature of JHs and their precursors, in conjunction with their low concentration in tissues and susceptibility to degradation had made their quantification difficult. A variety of methods exist for JH quantification but few can quantify on the femtomole range. Currently applied methods are expensive and time consuming. In the present study we sought to develop a novel method for accurate detection and quantification of JHs and their precursors.

Methods

A sensitive and robust method was developed to quantify the precursor, farnesoic acid (FA) and juvenile hormone III (JH III) in biological samples. The assay is based on the derivatization of analytes with fluorescent tags, with subsequent analysis by reverse phase high performance liquid chromatography coupled to a fluorescent detector (HPLC-FD). The carboxyl group of FA was derivatized with 4-Acetamido-7-mercapto-2,1,3-benzoxadiazole (AABD-SH). Tagging the epoxide group of JH III required a two-step reaction: the opening of the epoxide ring with sodium sulfide and derivatization with the fluorescent tag 4-(N,N-Dimethylaminosulfonyl)-7-(N-chloroformylmethyl-N-methylamino)-2,1,3-benzoxadiazole (DBD-COCl).

Conclusions

The method developed in the present study showed high sensitivity, accuracy and reproducibility. Linear responses were obtained over the range of 10–20 to 1000 fmols. Recovery efficiencies were over 90% for JH III and 98% for FA with excellent reproducibility.

Significance

The proposed method is applicable when sensitive detection and accurate quantification of limited amount of sample is needed. Examples include corpora allata, hemolymph and whole body of female adult Aedes aegypti and whole body Drosophila melanogaster. A variety of additional functional groups can be targeted to add fluorescent tags to the remaining JH III precursors.  相似文献   

19.
Gas chromatography using a short packed column (45 cm, 0.2 cm i.d., 2% OV-101 on Gas-Chrom Q) with mass spectrometric detection in the selected ion monitoring mode has been found satisfactory for the analysis of lower as well as higher polybrominated biphenyls. Acceptable sensitivity (< 1 ng) may be achieved for this method by focusing selectively at either the low (m/z 20-600) or the high m/z 600-1000) range of the quadrupole filter (low range for mono- through hexabromobiphenyl, high range for hexa- through decabromobiphenyl). A tuning technique has been developed for low range and high range polybrominated biphenyls using the ion abundances of perfluorotributylamine as a standard. Standard ions for the quantitation of mono- through decabromo-biphenyls were selected and validated. The technique was applied to the analysis of a variety of environmental samples.  相似文献   

20.
Shotgun lipidomics, comprised of intrasource separation, multidimensional mass spectrometry and computer-assisted array analysis, is an emerging powerful technique in lipidomics. Through effective intrasource separation of predetermined groups of lipid classes based on their intrinsic electrical propensities, analyses of lipids from crude extracts of biologic samples can be directly and routinely performed. Appropriate multidimensional array analysis of lipid pseudomolecular ions and fragments can be performed leading to the identification and quantitation of targeted lipid molecular species. Since most biologic lipids are linear combinations of aliphatic chains, backbones and head groups, a rich repertoire of multiple lipid building blocks present in discrete combinations represent experimental observables that can be computer reconstructed in conjunction with their pseudomolecular ions to directly determine the lipid molecular structures from a lipid extract. Through this approach, dramatic increases in the accessible dynamic range for ratiometric quantitation and discrimination of isobaric molecular species can be achieved without any prior column chromatography or operator-dependent supervision. At its current state of development, shotgun lipidomics can analyze over 20 lipid classes, hundreds of lipid molecular species and more than 95% of the mass content of a cellular lipidome. Thus, understanding the biochemical mechanisms underlying lipid-mediated disease states will be greatly facilitated by the power of shotgun lipidomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号