首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
This study demonstrates synergistic effects on Tac expression by interleukin 1 (IL-1) or tumor necrosis factor alpha (TNF alpha) in combination with the adenylate cyclase stimulator, forskolin (FK), as well as by IL-1 with TNF alpha in the human NK-like leukemic cell line YT. The maximal expression level (greater than 80% positive cells) obtained with FK plus IL-1 or FK plus TNF alpha could not be obtained by increasing the concentration of either agent alone. Furthermore, we demonstrate that Tac protein expression is correlated with increased steady-state Tac mRNA levels. Other agents that increase intracellular cAMP, such as prostaglandin E (PGE) or isobutyl-methylxanthine (IBMX), also synergized with IL-1 or TNF alpha (but not with FK). The findings suggest that cAMP plays a role in regulating Tac expression in YT cells, and that IL-1, TNF, and FK use distinct signal transduction mechanisms, all resulting in the same end point effect, namely, induction of Tac mRNA and cell surface protein expression.  相似文献   

5.
6.
Agents that can arrest cellular proliferation are now providing insights into mechanisms of growth factor action and how this action may be controlled. It is shown here that the macrophage activating agents tumor necrosis factor-alpha (TNF alpha), interferon-gamma (IFN gamma), and lipopolysaccharide (LPS) can maximally inhibit colony stimulating factor-1 (CSF-1)-induced, murine bone marrow-derived macrophage (BMM) DNA synthesis even when added 8-12 h after the growth factor, a period coinciding with the G1/S-phase border of the BMM cell cycle. This inhibition was independent of autocrine PGE2 production or increased cAMP levels. In order to compare the mode of action of these agents, their effects on a number of other BMM responses in the absence or presence of CSF-1 were examined. All three agents stimulated BMM protein synthesis; TNF alpha and LPS, but not IFN gamma, stimulated BMM Na+/H+ exchange and Na+,K(+)-ATPase activities, as well as c-fos mRNA levels. IFN gamma did not inhibit the CSF-1-induced Na+,K(+)-ATPase activity. TNF alpha and LPS inhibited both CSF-1-stimulated urokinase-type plasminogen activator (u-PA) mRNA levels and u-PA activity in BMM, whereas IFN gamma lowered only the u-PA activity. In contrast, LPS and IFN gamma, but not TNF alpha, inhibited CSF-1-induced BMM c-myc mRNA levels, the lack of effect of TNF alpha dissociating the inhibition of DNA synthesis and decreased c-myc mRNA expression for this cytokine. These results indicate that certain biochemical responses are common to both growth factors and inhibitors of BMM DNA synthesis and that TNF alpha, IFN gamma, and LPS, even though they all have a common action in suppressing DNA synthesis, activate multiple signaling pathways in BMM, only some of which overlap or converge.  相似文献   

7.
8.
Interleukin 6 (IL-6; also referred to as interferon-beta 2, 26-kDa protein, and B cell stimulatory factor 2) is a cytokine whose actions include a stimulation of immunoglobulin synthesis, enhancement of B cell growth, and modulation of acute phase protein synthesis by hepatocytes. Synthesis of IL-6 is stimulated by interleukin 1 (IL-1), tumor necrosis factor (TNF), or platelet-derived growth factor. We examined the role of the cyclic AMP (cAMP)-dependent signal transduction pathway in IL-6 gene expression. Several activators of adenylate cyclase, including prostaglandin E1, forskolin, and cholera toxin, as well as the phosphodiesterase inhibitor isobutylmethylxanthine and the cAMP analog dibutyryl cAMP, shared the ability to cause a dramatic and sustained increase in IL-6 mRNA levels in human FS-4 fibroblasts. Actinomycin D treatment abolished this enhancement. Treatments that increased intracellular cAMP also stimulated the secretion of the IL-6 protein in a biologically active form. Increased intracellular cAMP appears to enhance IL-6 gene expression by a protein kinase C-independent mechanism because down-regulation of protein kinase C by a chronic exposure of cells to a high dose of 12-O-tetradecanoylphorbol 13-acetate did not abolish the enhancement of IL-6 expression by treatments that increase cAMP. IL-1 and TNF too increased IL-6 mRNA levels by a protein kinase C-independent mechanism. Our results suggest a role for the cAMP-dependent pathway(s) in IL-6 gene activation by TNF and IL-1.  相似文献   

9.
10.
The protective actions of prostacyclin (PGI(2) ) are mediated by cyclic AMP (cAMP) which is reduced by type 4 phosphodiesterases (PDE4) which hydrolyze cAMP. Superoxide (O2(-)) from NADPH oxidase (Nox) is associated with impaired PGI(2) bioactivity. The objective of this study, therefore, was to study the relationship between Nox and PDE4 expression in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated with the thromboxane A(2) analog, U46619, 8-isoprostane F(2α) (8IP), or tumor necrosing factor alpha (TNFα) [±iloprost (a PGI(2) analog)] and the expression of PDE4A, B, C, and D and splice variants thereof assessed using Western blotting and qPCR and mRNA silencing of Nox4 and Nox5. Effects on cell replication and angiogenesis were also studied. U46619, 8IP, and TNFα increased the expression of Nox 4 and Nox 5 and all PDE4 isoforms as well as cell replication and tubule formation (index of angiogenesis), effects inhibited by mRNA silencing of Nox4 (but not Nox5) and iloprost and rolipram. These data demonstrate that upregulation of Nox4 leads to an upregulation of PDE4A, B, and D and increased hydrolysis of cAMP which in turn augments cell replication and angiogenesis. This mechanism may be central to vasculopathies associated with endothelial dysfunction since the PGI(2)-cAMP signaling axis plays a key role in mediating functions that include hemostasis and angiogenesis.  相似文献   

11.
12.
T Nakano  O Ohara  H Teraoka  H Arita 《FEBS letters》1990,261(1):171-174
Two potent inflammatory mediators, interleukin 1 (IL-1) and tumor necrosis factor (TNF) as well as lipopolysaccharide (LPS) increased group II phospholipase A2 (PLA2) mRNA levels, which resulted in enhanced secretion of the PLA2 enzyme from rat smooth muscle cells. cAMP-elevating agents also stimulated the release of PLA2 and increased the mRNA, but IL-1, TNF and LPS did not affect cAMP levels. Furthermore, the effects of TNF and cAMP-elevating agents were not additive but synergistic. Therefore, we concluded that the level of rat group II PLA2 mRNA is controlled at least by two distinct mechanisms, one involves cAMP and the other is mediated by TNF, IL-1 and LPS. This study also suggests important roles of group II PLA2 in pathogenesis of vascular inflammation.  相似文献   

13.
14.
15.
The effects of phorbol ester (TPA) and other known stimulators such as tumor necrosis factor (TNF), interleukin-1, and lipopolysaccharide on induction of mRNA for manganese-superoxide dismutase (Mn-SOD) were investigated in various cell lines. TPA enhanced Mn-SOD mRNA expression in TNF-resistant cell lines including HeLa cells, in which the other reagents also induced expression of the gene, but did not affect TNF-sensitive cells, in which the other stimulators did not alter expression of the gene. HeLa cells which had been desensitized to TPA by pretreatment with TPA for 24 h expressed Mn-SOD mRNA at a slightly higher level than the cells without TPA treatment. TPA-pretreated cells stimulated with TNF, however, expressed Mn-SOD mRNA at about twice the level of TNF-stimulated, TPA-untreated cells. When protein synthesis was inhibited by cycloheximide during TPA pretreatment, TNF no more enhanced the Mn-SOD mRNA accumulation. These data suggest that at least two separate signal-transducing pathways are involved in expression of this gene. One is triggered by protein kinase C activation itself in the absence of new protein synthesis. The other can be activated by stimulation with TNF, interleukin-1, or lipopolysaccharide and in which a protein factor that can be induced by TPA treatment is involved.  相似文献   

16.
Cyclic AMP (cAMP) is known to be an important mediator of gene expression in eukaryotic cells. At present, little is known about the developmental events which render specific genes responsive to cAMP in distinct cell types, or about the biochemical mechanisms by which cAMP exerts these regulatory effects. By examining the effects of cAMP treatment on specific mRNA levels in Dictyostelium discoideum cells with different 'developmental histories', we defined the developmental states in which specific genes display responsiveness to cAMP. We focused on two specific rapid responses: the ability of cAMP to inhibit the expression of an 'early' developmentally regulated mRNA (discoidin-I) and to stimulate the expression of a 'late', prespore-specific mRNA (PL3). Using this approach, we showed that, for both mRNAs, the ability to respond rapidly to cAMP is absent from vegetative cells grown on bacteria, and is acquired during development on filters. Furthermore, we identified several developmental states in which the discoidin-I response to cAMP is present, but in which the PL3 response is not. In experiments designed to examine the effects of cAMP analogues on the levels of these two mRNAs, we demonstrated that the analogue specificities of the discoidin-I and PL3 responses are different, and that the specificity for the PL3 response depends on the developmental state. The developmental kinetics and analogue specificity of the PL3 response suggest a two-step mode of action of cAMP in activating the expression of this gene. We discuss possible implications of these findings for the mechanisms of action of exogenous cAMP as well as for the role of cAMP in controlling the changes in gene expression that accompany normal development.  相似文献   

17.
18.
19.
20.
We have reported previously that expression of the human apolipoprotein E (apoE) gene in mouse Y1 adrenocortical cells suppresses basal and adrenocorticotropin (ACTH)-stimulated steroidogenesis. To understand the mechanism of this suppression, we have examined the integrity of cAMP regulated events required for adrenal steroidogenesis. Both acute and chronic responses to ACTH or cAMP are suppressed in Y1 cells which express apoE (Y1-E cells) as compared with parental Y1 cells. Acute morphologic changes in response to cAMP and acute induction of steroidogenesis by cAMP are suppressed in the Y1-E cell lines. Constitutive expression of P450-cholesterol side chain cleavage enzyme mRNA, the rate-limiting enzyme in steroid hormone synthesis, is reduced up to 11-fold in the Y1-E cell lines. The level of mRNA encoding P450-cholesterol side chain cleavage correlates directly with the reduction in basal steroid production observed in the individual Y1-E cell lines. Expression of P450-11 beta-hydroxylase mRNA, although readily detectable in Y1 parent cells, is absent or reduced in the Y1-E cell lines. Inhibition of cAMP-regulated gene expression is not restricted to genes required for steroid synthesis, since cAMP induction of ornithine decarboxylase mRNA is also inhibited in the Y1-E cell lines. These data indicate that suppression of steroidogenesis in Y1-E cells is due, at least in part, to inhibition of cAMP-regulated gene expression. These effects are not due to a defective cAMP-dependent protein kinase, since kinase activity in vitro and activation in vivo are unaltered in the Y1-E cell lines. These results suggest that expression of apoE in Y1 cells blocks cAMP-mediated signal transduction at a point distal to activation of cAMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号