首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Red blood cell targeting to smooth muscle cells   总被引:1,自引:0,他引:1  
Monoclonal antibody discriminating between endothelial and smooth muscle cells is suggested to be used as a vector for directed transport of drugs to injured (denuded) areas of blood vessel wall. An in vitro model system was used in the studies: vascular smooth muscle or endothelial cells grown on plastic surface were treated with specific mouse monoclonal antibody recognizing an antigen localized on the surface of smooth muscle rather than endothelial cells; then erythrocytes coated with secondary (rabbit antimouse) antibodies were added. The results were analyzed spectrophotometrically or with scanning electron microscopy. Under the experimental conditions, erythrocytes, possible 'containers' for carrying the drugs, were found to bind only to smooth muscle cells. The data show that antibody provides absolute discrimination between endothelial and smooth muscle cells and, thus, may be used as a vector for drug targeting.  相似文献   

2.
Circulating endothelial cells as a sign of vessel wall lesions.   总被引:6,自引:0,他引:6  
A new method of endothelaemia estimation was used to investigate the production of vessel wall lesions by various drugs in rats. Increased endothelaemia was observed after endotoxin, activation of the blood contract system, hyaluronidase, streptokinase, anoxia and vasoactive drugs.  相似文献   

3.
Monoclonal antibodies specific for surface antigens of target cells are supposed to be good vectors for drug transport. It is suggested using monoclonal antibodies that distinguish between smooth muscle and endothelial cells as vectors for directed drug transport to injured (denuded) areas of the blood vessel wall. The following in vitro model was used: monoclonal antibodies were added to cultured vascular smooth muscle or endothelial cells, this was followed by the addition of erythrocytes conjugated with rabbit antimouse antibodies. Spectrometry and scanning electron microscopy were used to assess the results. The erythrocytes, possible containers of drugs, under the experimental conditions were found to bind only to smooth muscle cells. The data obtained suggest that antibody IIG10 discriminating between smooth muscle and endothelial cells provides a specific tool for erythrocyte delivery to smooth muscle cells.  相似文献   

4.
Having a good estimate of a vessel’s handling time is essential for planning and scheduling container terminal resources, such as berth positions, quay cranes (QCs) and transport vehicles. However, estimating the expected vessel handling time is not straightforward, because it depends on vessel characteristics, resource allocation decisions, and uncertainties in terminal processes. To estimate the expected vessel handling time, we propose a two-level stochastic model. The higher level model consists of a continuous-time Markov chain (CTMC) that captures the effect of QC assignment and scheduling on vessel handling time. The lower level model is a multi-class closed queuing network that models the dynamic interactions among the terminal resources and provides an estimate of the transition rate input parameters to the higher level CTMC model. We estimate the expected vessel handling times for several container load and unload profiles and discuss the effect of terminal layout parameters and crane service time variabilities on vessel handling times. From numerical experiments, we find that by having QCs cooperate, the vessel handling times are reduced by up to 15 %. The vessel handling time is strongly dependent on the variation in the QC service time and on the vehicle travel path topology.  相似文献   

5.
Mechanical skin irritation, for example a light scratch with a needle, induces histamine and neuropeptide release on the line of stroke and in the surrounding tissue. Both histamine and neuropeptides are vasodilators. They cause vasodilation by changing the contraction state of the vascular smooth muscles and hence vessel compliance. Smooth muscle contraction state is very difficult to measure in vivo. For that reason we propose in this article an identification procedure to establish an irritation law. The law gives change in vessel compliance as a function of space, time and the intensity of the stroke. We have showed that vessel compliance increases immediately after the stroke not only on the line of stroke, but also in the surrounding tissue. Then, after a short delay, vessel compliance starts decreasing in the surrounding tissue, whereas vessel compliance on the line of stroke keeps increasing. Hence, blood is transported from the surrounding tissue to the line of stroke. In this way, higher blood volume on the line of stroke can be obtained than by only changing vessel compliance locally.  相似文献   

6.
The fundamental improvement of muscle ischemia requires the re-establishment of sufficient vessel network. Despite many kinds of drugs have been used for ischemia, effective angiogenic drug is very limited. Here, we reported the identification and isolation of a potent angiogenic fraction (angio-T) from Geum japonicum and assessment of its therapeutic effects on muscle ischemia by reconstituting the insufficient blood supply network and enhancing cell survival potential. It was demonstrated that angio-T not only significantly enhanced the proliferation of cultured HCAECs in vitro, but also significantly enhanced the survival potential of the myofibers at risk and neovascularization in ischemic muscles leading to reconstitution of these vessel networks, significant reduction of ischemic areas, and significant myofiber regeneration in ischemic area one week post-ischemia.  相似文献   

7.
Computational fluid dynamics was used to model flow past multiple adherent leukocytes in postcapillary size vessels. A finite-element package was used to solve the Navier-Stokes equations for low Reynolds number flow of a Newtonian fluid past spheres adhering to the wall of a cylindrical vessel. We determined the effects of sphere number, relative geometry, and spacing on the flow resistance in the vessel and the fluid flow drag force acting to sweep the sphere off the vessel wall. The computations show that when adherent leukocytes are aligned on the same side of the vessel, the drag force on each of the interacting leukocytes is less than the drag force on an isolated adherent leukocyte and can decrease by up to 50%. The magnitude of the reduction depends on the ratio of leukocyte to blood vessel diameter and distance between adherent leukocytes. However, there is an increase in the drag force when leukocytes adhere to opposite sides of the vessel wall. The increase in resistance generated by adherent leukocytes in vessels of various sizes is calculated from the computational results. The resistance increases with decreasing vessel size and is most pronounced when leukocytes adhere to opposite sides of the vessel.  相似文献   

8.
Regirer SA  Shadrina NKh 《Biofizika》2002,47(5):908-913
Smooth muscles in the walls of small blood vessels under normal conditions are always moderately active, so that there is a certain reserve for blood flow adaptation to changed conditions by either narrowing or expanding of the vessel lumen. The previous studies of small vessel hydrodynamics have shown that the activity can cause specific instability of vessel steady states. In order to trace qualitatively the influence of numerous factors on the active state of the vessel, a simplified model of the vessel was proposed, which is reduced to a nonlinear ordinary equation of the first order with delayed argument.  相似文献   

9.
Restriction of blood flow by the narrowing or occlusion of arteries is one of the most common presentations of cardiovascular disease. One treatment involves the introduction of a metal scaffold, or stent, designed to prevent recoil and to provide structural stability to the vessel. On the occasions that this treatment is ineffective, failure is usually associated with re-invasion of tissue. This can be prevented by local delivery of drugs which inhibit tissue growth. The drug might be delivered locally in a polymer coating on the stent. This paper develops and explores the use of a thermal analogue of the drug delivery process and the associated three-dimensional convection-diffusion equation to model the spatial and temporal distribution of drug concentration within the vessel wall. This allows the routine use of commercial finite element analysis software to investigate the dynamics of drug distribution, assist in the understanding of the treatment process and develop improved delivery systems. Two applications illustrate how the model might be used to investigate the effects of controllable or measurable parameters on the progression of the process. It is demonstrated that the geometric characteristics of the stent can have significant impact on the homogeneity of the dosing in the vessel wall.  相似文献   

10.
Background. Blood vessel formation is important for many physiological and pathological processes and is therefore a critical target for drug development. Inhibiting angiogenesis to starve a tumour or promoting ‘normalization’ of tumour vasculature in order to facilitate delivery of anticancer drugs are both areas of active research. Recapitulation of vessel formation by human cells in vitro allows the investigation of cell—cell and cell—matrix interactions in a controlled environment and is therefore a crucial step in developing HCS (high content screening) and HTS (high throughput screening) assays to search for modulators of blood vessel formation. HUVECs (human umbilical‐vein endothelial cells) exemplify primary cells used in angiogenesis assays. However, primary cells have significant limitations that include phenotypic decay and/or senescence by six to eight passages in culture, making stable integration of fluorescent markers and large‐scale expansion for HTS problematic. To overcome these limitations for HTS, we developed a novel angiogenic model system that employs stable fluorescent endothelial cell lines based on immortalized HMECs (human microvascular endothelial cell). We then evaluated HMEC cultures, both alone and co‐cultured with an EMC (epicardial mesothelial cell) line that contributes vascular smooth muscle cells, to determine the suitability for HTS or HCS. Results. The endothelial and epicardial lines were engineered to express a panel of nuclear‐ and cytoplasm‐localized fluorescent proteins to be mixed and matched to suit particular experimental goals. HMECs retained their angiogenic potential and stably expressed fluorescent proteins for at least 13 passages after transduction. Within 8 h after plating on Matrigel, the cells migrated and coalesced into networks of vessel‐like structures. If co‐cultured with EMCs, the branches formed cylindrical‐shaped structures of HMECs surrounded by EMC derivatives reminiscent of vessels. Network formation measurements revealed responsiveness to media composition and control compounds. Conclusions. HMEC‐based lines retain most of the angiogenic features of primary endothelial cells and yet possess long‐term stability and ease of culture, making them intriguing candidates for large‐scale primary HCS and HTS (of ~10000–1000000 molecules). Furthermore, inclusion of EMCs demonstrates the feasibility of using epicardial‐derived cells, which normally contribute to smooth muscle, to model large vessel formation. In summary, the immortalized fluorescent HMEC and EMC lines and straightforward culture conditions will enable assay development for HCS of angiogenesis.  相似文献   

11.
Tumor growth depends upon an adequate supply of oxygen and nutrients achieved through angiogenesis and maintenance of an intact tumor vasculature. Therapy with individual agents that target new vessel formation or existing vessels has suppressed experimental tumor growth, but rarely resulted in the eradication of tumors. We therefore tested the combined anti-tumor activity of vasostatin and interferon-inducible protein-10 (IP-10), agents that differently target the tumor vasculature. Vasostatin, a selective and direct inhibitor of endothelial cell proliferation, significantly reduced Burkitt tumor growth and tumor vessel density. IP-10, an "angiotoxic" chemokine, caused vascular damage and focal necrosis in Burkitt tumors. When combined, vasostatin plus IP-10 reduced tumor growth more effectively than each agent alone, but complete tumor regression was not observed. Microscopically, these tumors displayed focal necrosis and reduction in vessel density. Combination therapy with the inhibitors of angiogenesis vasostatin and IP-10 is effective in reducing the rate of tumor growth but fails to induce tumor regression, suggesting that curative treatment may require supplemental drugs targeting directly the tumor cells.  相似文献   

12.
The superior gluteal vessel has been reported as a recipient in free-tissue transfer for the coverage of complex soft-tissue defects in the lumbosacral region, where a suitable recipient vessel is difficult to find. The characteristics of proximity, vessel caliber, and constancy make the superior gluteal vessel preferable to previously reported recipient vessels. However, there are technical difficulties in microsurgery (e.g., short pedicle length and deep location) and muscle injury (transection of the muscle) associated with use of the superior gluteal vessel. The purpose of this article is to present a modification of an approach to the gluteal vessel to alleviate technical difficulties and minimize muscle injury. From August of 1997 to January of 1999, six patients received microvascular transfer of the latissimus dorsi muscle or myocutaneous flap to the sacral (4) and ischial (2) regions. The causes of defects were tumor (1), trauma (1), and pressure sores (4). A muscle-splitting approach was used on the superior gluteal vessel and was later applied to the inferior gluteal vessel. The gluteus maximus muscle was split as needed in the direction of its fibers, and the perforators were dissected down to the superior or inferior gluteal artery and vein deep into the muscle. The follow-up period ranged from 6 to 22 months, and all of the flaps survived with complete recovery of the lesion. The major drawbacks of using the superior and inferior gluteal vessels can be overcome with the muscle-splitting approach, which provides increased accessibility and additional length to the vascular pedicle while causing minimal injury to the muscle itself. It also proves to be an easy, safe, and reliable method of dissection. When free-tissue transfer to sacral, gluteal, and ischial regions is indicated, the muscle-splitting approach to the superior and inferior gluteal vessels is a recommended option in the selection of a recipient vessel.  相似文献   

13.
Tumor-associated neovasculature is a critical therapeutic target; however, despite significant progress made in the clinical efficacy of anti-vessel drugs, the effect of these agents remains transient: over time, most patients develop resistance, which inevitably leads to tumor progression. To develop more effective treatments, it is imperative that we better understand the mechanisms involved in tumor vessel formation, how they participate to the tumor progression and metastasis, and the best way to target them.  相似文献   

14.
Restriction of blood flow by the narrowing or occlusion of arteries is one of the most common presentations of cardiovascular disease. One treatment involves the introduction of a metal scaffold, or stent, designed to prevent recoil and to provide structural stability to the vessel. On the occasions that this treatment is ineffective, failure is usually associated with re-invasion of tissue. This can be prevented by local delivery of drugs which inhibit tissue growth. The drug might be delivered locally in a polymer coating on the stent. This paper develops and explores the use of a thermal analogue of the drug delivery process and the associated three-dimensional convection–diffusion equation to model the spatial and temporal distribution of drug concentration within the vessel wall. This allows the routine use of commercial finite element analysis software to investigate the dynamics of drug distribution, assist in the understanding of the treatment process and develop improved delivery systems. Two applications illustrate how the model might be used to investigate the effects of controllable or measurable parameters on the progression of the process. It is demonstrated that the geometric characteristics of the stent can have significant impact on the homogeneity of the dosing in the vessel wall.  相似文献   

15.
Many proliferative diseases, most typically cancer, are driven by uncontrolled blood vessel growth. Genetic studies have been very helpful in unraveling the cellular and molecular players in pathological blood vessel formation and have provided opportunities to reduce tumor growth and metastasis. The fact that tumor vessels and normal blood vessels have distinct properties may help in designing more specific--and therefore safer--anti-angiogenic strategies. Such strategies may interfere with angiogenesis at the cellular or molecular level. Possible molecular targets include angiogenic growth factors and their receptors, proteinases, coagulation factors, junctional/adhesion molecules and extracellular matrix (ECM) components. Some anti-angiogenic drugs, i.e., vascular endothelial growth factor (VEGF) antibodies and VEGF receptor-2 (VEGFR-2) inhibitors, have progressed into clinical cancer trials. While the results of these trials support the potential of anti-angiogenic therapy to treat cancer, they also demonstrate the need for more effective and safer alternatives. Targeting placental growth factor (PlGF) or VEGFR-1 may constitute such an alternative since animal studies have proven their pleiotropic working mechanism and attractive safety profile. Together, these insights may bring anti-angiogenic drugs closer from bench to bedside.  相似文献   

16.
A novel, goal function-based formulation for the growth dynamics of arteries is introduced and used for investigating the development of growth instability in blood vessels. Such instabilities would lead to abnormal growth of the vessel, reminiscent of an aneurysm. The blood vessel is modeled as a thin-walled cylindrical tube, and the constituents that form the vessel wall are assumed to deform together as a constrained mixture. The growth dynamics of the composite material of the vessel wall are described by an evolution equation, where the effective area of each constituent changes in the direction of steepest descent of a goal function. This goal function is formulated in such way that the constituents grow toward a target potential energy and a target composition. The convergence of the simulated response of the evolution equation toward a target homeostatic state is investigated for a range of isotropic and orthotropic material models. These simulations suggest that elastin-deficient vessels are more prone to growth instability. Increased stiffness of the vessel wall, on the other hand, gives a more stable growth process. Another important finding is that an increased rate of degradation of materials impairs growth stability.  相似文献   

17.
The response of small arterial vessels to internal pressure makes an essential contribution to autoregulation in the vascular bed. It is believed that free cytosolic Ca2+ concentration plays a pivotal role in the regulation of smooth muscle contractility and hence of the vascular lumen. A simple mathematical model of blood flow in a resistive vessel is suggested. The model is based on the experimental data obtained for cerebral arteries, but may be used for any other resistive vessel. The model not only describes the regulation of the vascular lumen by transmural pressure but also shows realistic behavior of the vessel radius and cytosolic [Ca2+] at different rates of pressure change. Possible variations in the radius along the vessel due to the Bayliss effect are considered.  相似文献   

18.
The chick chorioallantoic membrane (CAM) is a valuable model for evaluating angiogenesis and vasculogenesis. Our purpose was to characterize the formation of the CAM vasculature, in particular the capillary plexus, between days five and six after fertilization and to examine the mode of action of cytochalasin D and suramin on vascular development during this interval. The CAM increased 20-fold in size between days five and six, during which time the capillary plexus forms by both migration of mesodermal blood vessels toward the ectoderm and by the formation of new vessels from angioblasts near the ectoderm. Between days five and six, the CAM becomes thinner, and the density of the mesodermal cells decreases. To determine the mode of action of anti-angiogenic drugs on the day five to day six CAM, various concentrations of cytochalasin D or suramin were added directly to day five CAMs, and their effects were evaluated on day six. Both drugs significantly inhibited CAM growth, altered branching patterns of the major vessels, decreased area of the major vessels, and inhibited the formation of the capillary plexus by inhibiting both vasculogenesis and the migration of mesodermal blood vessels to the ectoderm. Cytochalasin D also inhibited compartmentalization of the plexus. Cytochalasin D and suramin were inhibitory at similar doses. This study provides new information on early CAM development, establishes the mode of action and dose dependency of cytochalasin D and suramin on day five to day six CAMs, and demonstrates that the day five to day six CAM provides a useful assay to examine the effect of anti-angiogenic drugs on blood vessel development, including capillary plexus formation.  相似文献   

19.
Intrinsic alterations in the tumor microenvironment are known to contribute to various forms of drug resistance. For example, tumor hypoxia, due to abnormal or sluggish blood flow within areas of solid tumors, can result in both microenvironment-mediated radiation and chemotherapeutic drug resistance. In contrast, acquired resistance to chemotherapy is generally considered to be the result of the gradual selection of mutant subpopulations having genetic mutations and biochemical alterations responsible for the resistant phenotype. Here we present a paradigm for therapyinduced microenvironment-mediated acquired drug resistance. It is based on the results showing that tumor cells appear to be heterogeneous in their relative dependence on adjacent tumor-associated vasculature for survival. Some tumor cells are highly vessel dependent, whereas some are significantly less so, and thus can survive in more hypoxic regions of tumors, distal from such tumor vessels. Hence, it is possible that variant tumor cells that are less vessel dependent may therefore be selected for over time by successful antiangiogenic drug therapies. This results in loss of response or attenuated responses to the therapy. Preliminary evidence is summarized in support of this hypothesis, using paired human colon cancer (HCT116) cell lines that contain two copies of either the wild-type or the disrupted p53 tumor suppressor gene. The mutant cells were found to be less responsive to antiangiogenic therapy, compared to the wild-type cells, and could be progressively selected for in mixed cell populations. Because p53 inactivation can lead to resistance to hypoxia-mediated apoptosis, the results suggest that a protracted and successful antiangiogenic therapy may create more hypoxic tumor microenvironments, thereby creating the necessary conditions to accelerate the selection of mutant tumor cells that are more adept in surviving and growing in such environments. As such, consideration might be given to the combined use of bioreductive hypoxic cell cytotoxic drugs and angiogenesis inhibitors to prolong the efficacy of antiangiogenic therapeutics.  相似文献   

20.
A derivation is given of the reflection coefficient of pressure waves in a vessel whose end branches into many smaller vessles. This coefficient depends on the number of these smaller vessels and their sizes relative to the size of the main vessel. Estimations are made of the order of magnitude of the coefficient. Assuming the main vessel to be of the order of size of an artery, it is shown that the reflection coefficient has a value close to one for reflections at branchings into vessels of arteriolar size. It is pointed out that the result may support the idea that the standing waves in the arterial system are due to reflections at the site of the arterioles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号