首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of trichothecene mycotoxins, deoxynivalenol (DON), fusarenon-X (FX) and nivalenol (NIV), on plaque formation of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) in HEp-2 cells was examined. The 50% effective concentrations (EC50) of DON, FX, and NIV for HSV-1 plaque formation were 160, 56, and 120 ng/ml, respectively. Those for HSV-2 plaque formation were 94, 26, and 50 ng/ml, respectively. These three mycotoxins showed about 2-fold higher selectivity to HSV-2 than to HSV-1. Plaque formation of HSV-1 was not inhibited with trichothecenes at concentrations completely inhibiting plaque formation when cells were treated during virus adsorption period or 15 hr before infection. These results indicate that trichothecenes affect replication of HSV-1 after virus adsorption, but not before or during virus adsorption to the host cells.  相似文献   

2.
Fiala, Milan (University of Washington, Seattle), and George E. Kenny. Enhancement of rhinovirus plaque formation in human heteroploid cell cultures by magnesium and calcium. J. Bacteriol. 92:1710-1715. 1966.-A reproducible macroplaque assay for six M and three H strains of rhinoviruses has been developed in several human heteroploid cell lines. Plaques were produced only with suitable solidifying agents: purified agar (Ionagar, Agarose) or methylcellulose. Plaque development was greatly enhanced by increasing Mg(+2) to 30 to 40 mm. Diethylaminoethyl (DEAE) dextran also increased plaque sizes, and the effects of Mg(+2) and DEAE dextran were additive. In addition, Ca(+2) substituted for Mg(+2). The suitability of human heteroploid cell lines for rhinovirus plaque assay varied greatly, ranging from insensitivity through partial to complete sensitivity. This assay was six to seven times more sensitive than an end point tube assay. These results indicate that potentiation of plaque formation by Mg(+2) known for some enteroviruses can also be extended to the rhinovirus group of picornaviruses.  相似文献   

3.
Plaque Formation by 55 Rhinovirus Serotypes   总被引:1,自引:0,他引:1       下载免费PDF全文
Plaque production by 55 rhinoviruses in several lines of HeLa cells is reported. Forty-nine types produced macroscopic plaques under the conditions described previously employing 30 mM MgCl(2) and 30 mug/ml of DEAE-dextran in overlay and M HeLa cells. Basically three kinds of plaques were observed: clear large and intermediate sized plaques and small turbid plaques. Five rhinoviruses produced plaques only in a sensitive clonal line isolated from the M HeLa line. Rhinovirus type 4 produced plaques after the pretreatment of cells with actinomycin D. Enhancement of plaque formation by MgCl(2) has been demonstrated to date with 17 rhinoviruses. Some rhinoviruses were enhanced either by DEAE-dextran or by dextran sulfate in the overlay. No inhibitors were found in any of 10 bovine sera tested. Rhinovirus type 2 was visualized inside HeLa cells by electron microscopy and there appeared to be a very high ratio of physical particles per infectious unit of virus.  相似文献   

4.
Butel, Janet S. (Baylor University College of Medicine, Houston, Tex.), Joseph L. Melnick, and Fred Rapp. Detection of biologically active adenovirions unable to plaque in human cells. J. Bacteriol. 92:433-438. 1966.-Plaque formation in green monkey kidney (GMK) cells by a defective simian virus 40-adenovirus 7 "hybrid" population (PARA-adenovirus 7) was enhanced by the addition of excess adenovirions. Adenovirus types 2, 7, and 12 were capable of providing enhancement, although none of these viruses gives rise to plaques in simian cells in the absence of PARA (particle aiding replication of adenovirus). Near maximal enhancement of the PARA plaque titer on simian cells was obtained with input multiplicities ranging from 0.02 to 0.14 plaque-forming units (PFU) of helper adenovirus per GMK cell. The PFU of helper adenoviruses tested (types 2, 7, and 12) were measured in the most sensitive assay system, human kidney cells. This input corresponded to three to nine helper virus particles per GMK cell. The majority of particles capable of enhancing plaque formation by PARA banded at a density of 1.34 in CsCl. Adenoviruses inactivated by heat or ultraviolet light were not capable of enhancing plaque formation by PARA. Highest titers were obtained when PARA and helper adenovirus were inoculated simultaneously. Inoculation of the helper adenovirus 24 hr prior to the inoculation of PARA resulted in the formation of only 50% as many plaques, and no enhanced plaques developed when the adenovirus preceded PARA by 48 hr. Conversely, the addition of adenovirus 48 hr after the inoculation of PARA initiated 56% as many plaques as simultaneous inoculation; 4% of the enhanced plaques still formed when helper virus was added as late as 5 days after inoculation of PARA. These results suggest that adenovirus particles unable to plaque on human or monkey kidney cells are nevertheless capable of interacting with PARA in simian cells, thereby facilitating replication of both particles.  相似文献   

5.
The infectivity of fixed rabies virus in a number of cell lines has been shown to be markedly enhanced by the addition of protamine or diethylaminoethyl dextran to the virus inoculum. The polycations appear to exert their influence at a very early stage (adsorption or penetration or both) of virus-cell interaction. Immune globulin blocked infection completely when added up to 5 min after exposure and almost completely when added 5 to 15 min after infection. Antibody had no effect on adsorption and penetration when added to the inoculum 30 min or more after cells were exposed to the virus. Irradiation of BHK/21 cell monolayers with ultraviolet light increased their sensitivity to rabies virus. The events occurring after synchronous infection of cells in both irradiated and nonirradiated cell monolayers were followed by means of fluorescent-antibody staining and by intracerebral titration in mice. Virus-specific fluorescent antigen first appeared between 8 and 9 hr after infection, and in irradiated cultures there was a further lag period of 3 hr before infectious virus was produced intracellularly. Virus was first detected in the medium 12 to 15 hr after infection, and maximal yield of infectious virus was observed 48 hr after exposure. In nonirradiated cultures, formation of infectious virus was delayed, and the final yield of virus was also reduced.  相似文献   

6.
Pseudomonas aeruginosa ATCC 9027 contains an inducible alkaline phosphatase. The enzyme is readily removed from 14-hr cells by washes in 0.2 m MgCl(2), pH 8.4. Similar washes in tris(hydroxymethyl)aminomethane buffer, 20% sucrose, monovalent ions, or water partially release enzyme from the cells. The release of alkaline phosphatase is correlated with an increased release of protein and retention of internal enzymes. The effect of 0.2 m MgCl(2) washing upon the cells is minimal since both viability and growth rates remain unchanged as compared to water washing. Although cells are plasmolyzed in both 0.2 m MgCl(2) and 20% sucrose, it is evident that plasmolysis alone is unable to account for total enzyme release and that a divalent metal, i.e. Mg(2+), augments the release pattern. Growing cells in the presence of increasing concentrations of MgCl(2) or at increased pH values results in an almost total secretion of the enzyme to the culture filtrate. The findings suggest that P. aeruginosa alkaline phosphatase is linked to the exocytoplasmic region through divalent metal ion, presumably Mg(2+), bridges.  相似文献   

7.
Cultures of BHK-21/C13 cells, whose growth was inhibited by deprivation of serum, were stimulated to grow by addition of serum to the culture medium. Addition of MgCl(2) to the medium, to increase the concentration of Mg(2+) ions by 15mm, 30min before addition of serum, had no effect on the stimulation of cell growth, but inhibited the accumulation of cellular spermidine, so that the spermidine/spermine molar ratio was lower in these cultures than in cultures that had received no additional cations. The increase in the activity of ornithine decarboxylase that occurs 4-5h after serum ;step-up' was substantially diminished by increasing the concentration of Mg(2+) ions, but not of Na(+) or K(+) ions, in the medium by 30mm, 30min before addition of serum, and this inhibition was maintained for at least 24h. Methylglyoxal bis(guanylhydrazone), added to serum-deprived cultures to a concentration of 20mum, 30min before addition of serum, severely inhibited the increase in cell growth. The inhibitory effects of the drug were prevented by simultaneous addition of spermidine to the medium (to 100mum), and were partly prevented by the simultaneous addition of Mg(2+) ions (to 30mm). Mg(2+) ions were particularly effective in overcoming the inhibitory effect of methylglyoxal bis(guanylhydrazone) on the synthesis of DNA. Thus although a certain lack of specificity for cations exists in BHK-21/C13 cells, in that Mg(2+) ions can be substituted for polyamines, particularly spermidine, to some extent, there are cellular processes for which the requirement for polyamines as cations is specific.  相似文献   

8.
Studies on the replication of herpes simplex virus in organized cultures of rat central nervous system (CNS) and peripheral nervous system (PNS) tissue demonstrated synthesis of intra- and extracellular virus, as determined by plaque assay on HEp-2 cells. Newly synthesized intracellular virus appeared 12 to 14 hr after inoculation of CNS, followed 10 hr later by the appearance of extracellular virus. In PNS cultures, where higher inputs of virus were introduced, intracellular virus appeared 6 to 8 hr after inoculation, followed by extracellular virus 12 hr later. Polykaryocyte formation was observed in CNS and PNS tissue involving neuroglial, meningeal, or Schwann cells. Neuron somas did not participate in polykaryocyte formation, but they underwent progressive morphological changes starting with increased cytoplasmic granularity followed by nucleolar distortions and disintegration, margination of nuclear chromatin, and the appearance of intranuclear inclusions. Finally, all recognizable cellular detail was lost. Immune serum globulin failed to inhibit both the progressive nature of the cytopathic effect and the synthesis of intracellular virus. These findings are discussed in relation to other in vitro systems, as well as to disease processes in man and animals.  相似文献   

9.
Based on the assumption that fluidity of the plasma membrane and viral envelope is necessary for recruiting additional receptors and ligands to the initial attachment site for "multiple-site binding," we determined the effect of increased temperature on viral infectivity. Infection of human immunodeficiency virus type 1 (HIV-1) and a pseudotyped luciferase-expressing chimeric virus using MAGI and GHOST/CXCR4 cells showed that in 1 hr of viral adsorption the extent of virus infection and the amount of tightly adsorbed viruses depended on temperature; and that membrane fluidity increased according to increased temperature. Augmented infection was observed as post-attachment enhancement (PAE) when cells were washed and incubated at 40 C for 1 hr after viral adsorption. PAE was completely inhibited by 1 micro M of anti-CXCR4 peptide T140, and addition of T140 at 20 min resulted in a gradual loss of inhibition of PAE, indicating the need for a 30 to 40 min timelag to ensure tight multiple-site binding. These data suggest that the accumulation of gp120 and receptor complex (multiple-site binding) was needed to complete the infection. Treatments of cells with 0.05% Tween 20 or 2 micro g/ml of anti-HLA-II antibody resulted in increases or decreases, respectively, of attached viruses and the infectivity. As well, Tween 20 and anti-HLAII antibody enhanced and suppressed the fluidity of the plasma membrane, respectively. Amounts of adsorbed viruses and degrees of viral infectivity correlated with the intensity of fluidity of the plasma membrane, probably due to the formation of multiple-site binding.  相似文献   

10.
Adsorption of DNA to sand and variable degradation rates of adsorbed DNA   总被引:11,自引:0,他引:11  
Adsorption and desorption of DNA and degradation of adsorbed DNA by DNase I were studied by using a flowthrough system of sand-filled glass columns. Maximum adsorption at 23 degrees C occurred within 2 h. The amounts of DNA which adsorbed to sand increased with the salt concentration (0.1 to 4 M NaCl and 1 mM to 0.2 M MgCl2), salt valency (Na+ less than Mg2+ and Ca2+), and pH (5 to 9). Maximum desorption of DNA from sand (43 to 59%) was achieved when columns were eluted with NaPO4 and NaCl for 6 h or with EDTA for 1 h. DNA did not desorb in the presence of detergents. It is concluded that adsorption proceeded by physical and chemical (Mg2+ bridging) interaction between the DNA and sand surfaces. Degradability by DNase I decreased upon adsorption of transforming DNA. When DNA adsorbed in the presence of 50 mM MgCl2, the degradation rate was higher than when it adsorbed in the presence of 20 mM MgCl2. The sensitivity to degradation of DNA adsorbed to sand at 50 mM MgCl2 decreased when the columns were eluted with 0.1 mM MgCl2 or 100 mM EDTA before application of DNase I. This indicates that at least two types of DNA-sand complexes with different accessibilities of adsorbed DNA to DNase I existed. The degradability of DNA adsorbed to minor mineral fractions (feldspar and heavy minerals) of the sand differed from that of quartz-adsorbed DNA.  相似文献   

11.
A bovine herpesvirus 1 (BHV-1) gIII deletion mutant (gIII-) was produced by means of recombinant DNA that retained the ability to replicate in cell culture. However, the gIII- mutant was functionally defective, showing impaired attachment to permissive cells, a delay in virus replication, and reduced extracellular virus production. The attachment defect exhibited by the gIII- mutant is an indication of the role played by gIII in the normal infection process. This was shown by dramatically decreased binding of radiolabelled gIII- virus to permissive cells and a slower adsorption rate, as measured by plaque formation, than the wild-type (wt) virus. Furthermore, treatment of the gIII- virus with neomycin increased virus adsorption and plaque formation by severalfold, whereas neomycin treatment had no effect on the wt virus. This observation showed that the gIII- mutant was strictly defective in adsorption but fully competent to produce productive infections once induced to attach. The gIII- mutant showed greater sensitivities than did the wt virus to anti-gI and anti-gIV antibody-mediated neutralization. Analyses with panels of monoclonal antibodies to gI and gIV revealed that the epitopes gI-IV and gIV-III were the main targets for enhanced neutralization. This provided evidence that gI and gIV may also participate in virus attachment. Finally, when affinity-purified gI, gIII, and gIV were tested for their ability to inhibit virus adsorption, gIII had the most pronounced inhibitory effect, followed by gI and then gIV. gIII was able to completely inhibit wt virus adsorption, and at a high concentration, it also partially inhibited the gIII- mutant. gI and gIV inhibited wt and gIII- mutant adsorption to a comparable extent. Our results collectively indicate that gIII plays a predominant role in virus attachment, but gI and gIV also contribute to this process. In addition, a potential cooperative mechanism for virus attachment with these three proteins is presented.  相似文献   

12.
We investigated the direct and indirect effects of mono-, di-, and trivalent salts (NaCl, MgCl(2), and AlCl(3)) on the adsorption of several viruses (MS2, PRD-1, phiX174, and poliovirus 1) to microporous filters at different pH values. The filters studied included Millipore HA (nitrocellulose), Filterite (fiberglass), Whatman (cellulose), and 1MDS (charged-modified fiber) filters. Each of these filters except the Whatman cellulose filters has been used in virus removal and recovery procedures. The direct effects of added salts were considered to be the effects associated with the presence of the soluble salts. The indirect effects of the added salts were considered to be (i) changes in the pH values of solutions and (ii) the formation of insoluble precipitates that could adsorb viruses and be removed by filtration. When direct effects alone were considered, the salts used in this study promoted virus adsorption, interfered with virus adsorption, or had little or no effect on virus adsorption, depending on the filter, the virus, and the salt. Although we were able to confirm previous reports that the addition of aluminum chloride to water enhances virus adsorption to microporous filters, we found that the enhanced adsorption was associated with indirect effects rather than direct effects. The increase in viral adsorption observed when aluminum chloride was added to water was related to the decrease in the pH of the water. Similar results could be obtained by adding HCl. The increased adsorption of viruses in water at pH 7 following addition of aluminum chloride was probably due to flocculation of aluminum, since removal of flocs by filtration greatly reduced the enhancement observed. The only direct effect of aluminum chloride on virus adsorption that we observed was interference with adsorption to microporous filters. Under conditions under which hydrophobic interactions were minimal, aluminum chloride interfered with virus adsorption to Millipore, Filterite, and 1MDS filters. In most cases, less than 10% of the viruses adsorbed to filters in the presence of a multivalent salt and a compound that interfered with hydrophobic interactions (0.1% Tween 80 or 4 M urea).  相似文献   

13.
Adsorption and desorption of DNA and degradation of adsorbed DNA by DNase I were studied by using a flowthrough system of sand-filled glass columns. Maximum adsorption at 23 degrees C occurred within 2 h. The amounts of DNA which adsorbed to sand increased with the salt concentration (0.1 to 4 M NaCl and 1 mM to 0.2 M MgCl2), salt valency (Na+ less than Mg2+ and Ca2+), and pH (5 to 9). Maximum desorption of DNA from sand (43 to 59%) was achieved when columns were eluted with NaPO4 and NaCl for 6 h or with EDTA for 1 h. DNA did not desorb in the presence of detergents. It is concluded that adsorption proceeded by physical and chemical (Mg2+ bridging) interaction between the DNA and sand surfaces. Degradability by DNase I decreased upon adsorption of transforming DNA. When DNA adsorbed in the presence of 50 mM MgCl2, the degradation rate was higher than when it adsorbed in the presence of 20 mM MgCl2. The sensitivity to degradation of DNA adsorbed to sand at 50 mM MgCl2 decreased when the columns were eluted with 0.1 mM MgCl2 or 100 mM EDTA before application of DNase I. This indicates that at least two types of DNA-sand complexes with different accessibilities of adsorbed DNA to DNase I existed. The degradability of DNA adsorbed to minor mineral fractions (feldspar and heavy minerals) of the sand differed from that of quartz-adsorbed DNA.  相似文献   

14.
Dengue virus multiplication in cultures of a murine myelomonocytic cell line (WEHI-3) as well as mouse peritoneal macrophages was enhanced by treatment of the cells with lipophilic derivatives of muramyl peptides for 2 or 3 days before virus inoculation, but not for 2 hr before virus inoculation or during the adsorption period. The infection-enhancing activity of the materials was dependent on their chemical structure, correlating with their immunoadjuvanticity. The infection enhancement in WEHI-3 cells was due primarily to an increase in the number of virus-infected cells which was accompanied by an increased cellular capacity to bind latex particles to their cell surfaces.  相似文献   

15.
Magnesium has been shown to modulate the Na+-stimulated release of Ca2+ (Na/Ca exchange) from brain mitochondria. The presence of 5 mM MgCl2 extramitochondrially inhibits the Na/Ca exchange as much as 70%. Additionally, Na+-stimulated Ca2+ release is enhanced by the presence of divalent chelators, this stimulation also being inhibited by the addition of excess Mg2+. The inhibitory effect of Mg2+ and the enhancement by chelating agents were both reversible. Heart mitochondria exhibit a similar enhancement of Na/Ca exchange by chelators and inhibition by MgCl2, though not as pronounced.  相似文献   

16.
We previously demonstrated that dexamethasone treatment of L929 cells inhibited plaque formation by vesicular stomatitis virus (VSV), encephalomyocarditis virus, or vaccinia virus. We now have characterized the antiviral effects of glucocorticoids in L929 cells. Dexamethasone did not directly inactivate VSV nor did steroid treatment of L929 cells affect virion adsorption or penetration. The VSV yield in L929 cells treated with dexamethasone for a period of only 4 or 8 hr was decreased by 50% when cells were infected the day following steroid treatment. Treating L929 cells with dexamethasone for a longer period resulted in greater inhibitions of virus synthesis. Interferon activity (less than 5 units/ml) was not detected in L929 cell culture fluids and cell sonicates from steroid-treated cells and the addition of antiserum to murine alpha/beta-interferon had no effect on the ability of dexamethasone to inhibit VSV replication. Dexamethasone treatment of L929 cells did not induce the production of double-stranded RNA-dependent protein kinase but did result in a slight elevation of 2-5A oligoadenylate synthetase activity, two enzymatic activities associated with the antiviral state induced by interferon. However, the elevated 2-5A synthetase activity was not associated with an inhibition of VSV RNA accumulation in dexamethasone-treated L929 cells. By contrast, the synthesis of all five VSV proteins was reduced by 50-75% in dexamethasone-treated L929 cells as early as 4 hr after infection. Thus, the dexamethasone-mediated inhibition of VSV replication in L929 cells is associated with decreased production of VSV structural proteins.  相似文献   

17.
Persistent infection of K562 cells by encephalomyocarditis virus.   总被引:2,自引:2,他引:0       下载免费PDF全文
Infection of human erythroleukemic K562 cells by encephalomyocarditis virus readily resulted in establishment of persistently infected cultures. In contrast to the usual typical lytic infection by encephalomyocarditis virus, in which trypan blue staining of cells reaches close to 100% by about 15 h postinfection, K562 cell cultures required 3 to 4 days postinfection to reach a maximum of about 80 to 90% cell staining. The proportion of K562 cells taking up stain gradually decreased to about 10% of those present by about 13 days postinfection; during this time, virus yield per day measured by either plaque or hemagglutination titration fell about 10-fold. The decrease in percent staining was followed by waves of increased staining accompanied by increased virus production. Virus-producing cultures were maintained for over 3 months. Evolution of both virus and cells accompanied establishment of persistence in that plaque size changed from about 7 mm in diameter for the original virus to less than 1.5 mm by day 20 postinfection and most of the cells cloned from persistently infected cultures were resistant to superinfection with the original virus. Resistance was due, at least in part, to reduced virus attachment in that binding of 3H-labeled virus to cloned resistant cells was about 2% of that to uninfected cells.  相似文献   

18.
The effect of calmodulin on the formation and decomposition of the Ca2+-dependent phosphoprotein intermediate of the (Mg2+ + Ca2+)-dependent ATPase in erythrocyte membranes was investigated. In the presence of 60 microM-Ca2+ and 25 microM-MgCl2, calmodulin (0.5-1.5 microgram) did not alter the steady-state concentration of the phosphoprotein, but increased its rate of decomposition. Higher calmodulin concentrations significantly decreased the steady-state concentration of phosphoprotein. Calmodulin (0.5-1.7 microgram) increased Ca2+-transport ATPase activity by increasing the turnover rate of its phosphoprotein intermediate. Increasing the MgCl2 concentration from 25 microM to 250 microM increased the (Mg2+ + Ca2+)-dependent ATPase activity, but decreased the concentration of the phosphoprotein intermediate. Similarly to calmodulin, MgCl2 increased the turnover rate of the Ca2+-transport ATPase complex (about 3-fold). At the higher MgCl2 concentration calmodulin did not further affect the decomposition of the phosphoprotein intermediate. It was concluded that both calmodulin and MgCl2 increase the turnover of the Ca2+-pump by enhancing the decomposition of the Ca2+-dependent phosphoprotein intermediate.  相似文献   

19.
This is the first report of plaque formation by a pathogenic insect virus. Trichoplusia ni (TN-368) cells overlaid with medium containing 0.6% methyl cellulose continued to multiply, developed into monolayers, and produced plaques after infection with alfalfa looper nuclear polyhedrosis virus. Viral polyhedral inclusion bodies were first observed 24 hr after exposure of cells to virus, and plaques continued to increase in size for 72 hr. Two different types of plaques were observed: one in which all cells had many polyhedra in their nuclei, and another in which few cells had inclusion bodies. When virus from either plaque was injected into T. ni larvae, they died of typical nuclear polyhedrosis virus disease. The assay was reproducible, and plaque numbers were related to virus concentration.  相似文献   

20.
Glycoprotein gIII of pseudorabies virus is multifunctional.   总被引:25,自引:24,他引:1       下载免费PDF全文
One of the major glycoproteins of pseudorabies virus, gIII, is nonessential for growth in cell culture. Mutants defective in gIII, however, consistently yield lower titers of infectious virus (3- to 20-fold) than does wild-type virus. The interactions of gIII- mutants with their host cells were compared with those of wild-type virus in an attempt to uncover the functions of gIII. We show that gIII plays a major role in the stable adsorption of the virus to its host cell; in the absence of gIII, the rate of adsorption is reduced and adsorption is easily reversed by washing. Thus, adsorption of pseudorabies virus can be said to occur in at least the following two ways: (i) a gIII-mediated rapid adsorption or (ii) a slower and more labile adsorption that is independent of gIII. After virions have been complexed with monoclonal antibodies against gIII (but not some monoclonal antibodies against other glycoproteins), both modes of adsorption were inhibited. Glycoprotein gIII affects virus stability and virus release, as well as adsorption. The effect on virus release is marked when the virus is defective in additional functions. Thus, although we found no obvious difference in the release of virus from gIII- or wild-type virus-infected rabbit kidney cells, release of a gIII-/gI- double mutant from the cells occurred less readily than did release of a gI- mutant. The gIII-/gI- and gIII- mutants, however, adsorbed to cells at a similar rate, indicating that the effects of gIII on adsorption and virus release constitute separate functions. The Bartha vaccine strain of pseudorabies virus has a defective gIII gene and is released poorly from rabbit kidney cells. After the resident Bartha gIII gene was replaced by the gIII gene of wild-type virus, virus release was enhanced considerably. Since inactivation of gIII in wild-type pseudorabies virus did not significantly affect virus release, the Bartha strain must be defective in another function which, in conjunction with gIII, significantly affects virus release. These results indicate again that gIII affects virus release in conjunction with other functions. Also, although the Bartha strain was functionally defective in virus release, it adsorbed to cells as well as wild-type virus did, showing that the effects of gIII on virus adsorption and release constitute separate functions. We conclude that gIII is a multifunctional glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号