首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The microfilamentous actin component of the cytoskeleton is crucial to endothelial angiogenesis and vascular permeability. Differences in actin cytoskeletal profiles in cultured human endothelial cells were explored: when first isolated, both primary human umbilical vein endothelial cells (HUVEC) and primary human placental microvascular endothelial cells (HPMEC) expressed F-actin, but notβ-actin orα-smooth muscle actin. A similar endothelial actin profile was observed in cryo-sections of freshly delivered term umbilical cord and placenta. In subsequent cell culture, although the actin cytoskeleton of HUVEC remained unchanged, the actin profiles of HPMEC altered after the second passage with the induction ofα-smooth muscle actin expression, which was intercellularly heterogeneous and increased to 20% at P4. This behavior occurred in HPMEC monolayers cultured on a variety of extracellular matrices. Comparisons with a spontaneously immortalized human microvascular cell-line, HGTEN 21, revealed that inprolonged passage, bothα-smooth muscle actin andβ-actin were expressed, whereas HPMEC at P4 showed a lower level ofβ-actin expression. Therefore, in comparison with large vessels, microvascular cells are more likely to dedifferentiate. This may reflect the ability of microvascular cells to remodel according to changing requirement for new vessel formation. In conclusion, passage of human microvascular endothelial cells, but not of larger vessel endothelial cells, alters the expression of actin isoforms. This may be important in relation to comparisons ofin vitro andin vivo vascular permeability; higher passage microvascular endothelial cells should thus be used with caution in such studies.  相似文献   

2.
Previous studies suggested that cultured human endothelial cells metabolize arachidonic acid to thromboxane A2. When primary cultures of human umbilical vein endothelial cells were incubated with 14C-arachidonic acid and the 14C-metabolites resolved by reverse phase high pressure liquid chromatography, radioactive products were observed that comigrated with 6-keto-prostaglandin F1alpha and thromboxane B2, the degradation products of prostacyclin and thromboxane A2, respectively. Since platelets synthesize thromboxane A2, the present study examined the hypothesis that adherent platelets may contaminate the primary cultures of human umbilical vein endothelial cells and be responsible for thromboxane B2 production. Confluent primary cultures or passaged cells were stimulated with histamine (10(-5) M). Incubation buffer was analyzed by specific radioimmunoassays for 6-keto-prostaglandin F1alpha and thromboxane B2. The production of thromboxane B2 decreased in the passaged cells (207 +/- 44 pg/ml versus 65 +/- 12 pg/ml; primary versus passaged cells). A moderate decrease in the yield of 6-keto-prostaglandin F1alpha was measured in the passaged cells compared to the primary cultures (3159 +/- 356 pg/ml versus 1678 +/- 224 pg/ml, primary versus passaged cells). If the primary cultures were incubated with human platelet-rich plasma for 30 min prior to stimulation with histamine, the amount of thromboxane B2 increased approximately 10-fold. In an additional experiment, sub-confluent primary cells were incubated with platelet-rich plasma for 30 min, washed to remove non-adherent platelets, and allowed to reach confluency. Confluent cells were then passaged and stimulated with histamine. The amount of thromboxane B2 was not significantly different from that obtained with passaged cells that had not been incubated with platelet-rich plasma during the primary culture (83 +/- 15 pg/ml versus 65 +/- 12 pg/ml, respectively). If the cyclooxygenase inhibitor indomethacin was included in the incubations, the amounts of both thromboxane B2 and 6-keto-prostaglandin F1alpha decreased. In contrast, the thromboxane A2 synthase inhibitor dazoxiben blocked thromboxane production and had no effect on the amount of 6-keto-prostaglandin F1alpha. Light microscopy revealed the presence of adherent platelets in primary cultures with and without platelet-rich plasma but no platelets were observed in any group of passaged cells. Histofluorescence for platelet serotonin indicated the presence of platelets only in primary cultures of human umbilical vein endothelial cells or in cultures pre-incubated with platelet-rich plasma. These studies suggest that primary cultures of human umbilical vein endothelial cells contain adherent platelets that contribute to thromboxane synthesis.  相似文献   

3.
K Kaji 《Human cell》1988,1(2):188-197
The purpose of this review is to introduce a simple and inexpensive culture method for human umbilical blood vessel endothelial cells. The medium used is MCDB-104 supplemented with 10% fetal bovine serum, 70 ng/ml endothelial cell growth factor from new-born bovine brains, 10 ng/ml murine epidermal growth factor, and 100 micrograms/ml heparin. The culture dishes are coated with gelatin. Under these conditions, endothelial cells from human vessels were grown with doubling times of 18-22 hrs and reached saturation densities of 8-12 x 10(4) cells/cm2. To determine the lifespan of the endothelial cells, the cells were serially subcultivated weekly at an inoculum size of 1,000 cells/cm2. Human endothelial cells from umbilical vein and artery were grown for 21 to 37 passages with 55 to 125 population doublings. This culture method seems to be useful for studying cell proliferation and functions of human endothelial cells.  相似文献   

4.
Human umbilical vessels are unique in lacking any innervation; thus endothelial cells may play the major role in local control and regulation of the blood flow. In the present study, we examined ultrathin sections of cultured human umbilical vein endothelial cells and tissue preparations of umbilical vein and artery, immunostained by the post-embedding colloidal gold double-labelling technique. We observed colocalization of atrial natriuretic peptide and neuropeptide Y, as well as colocalization of atrial natriuretic peptide and neuropeptide Y with other vasoactive substances, namely, vasoactive intestinal peptide, substance P, calcitonin gene-related peptide and arginine vasopressin. The functional significance of the colocalization of these vasoactive substances in the human umbilical vessel endothelial cells is discussed.  相似文献   

5.
Human umbilical endothelial cells in culture retain differentiated morphological and functional characterization in primary culture and even in the early subcultures, after which they begin to degenerate. We have studied the morphological and biochemical characterization (ability to produce prostacyclin, prostaglandin E2 and thromboxane A2 in culture) of endothelial cells in the first seven subcultures. In addition the influence of serum and endothelial cell growth factor added to the culture medium have been evaluated. With 20% normal human serum, cell proliferation is faster than with the same concentration of human fetal or bovine fetal serum.After the 3rd passage, morphological and growth alterations become observable in the endothelial cells. However, prostacyclin, prostaglandin E2 and thromboxane A2 production showed no variations during the study.  相似文献   

6.
目的:探索建立稳定有效的脐静脉内皮细胞体外培养方法。方法:用0.1%II型胶原酶消化分离人脐静脉肉皮细胞,加入含内皮细胞生长因子的M199完全培养液中培养,用胰蛋白酶-EDTA进行消化传代培养,用光镜和免疫组化方法对培养的细胞进行形态观察和鉴定。结果:原代培养的内皮细胞在接种后24h后完全贴壁生长,第445天后融合呈铺路石样镶嵌排列,免疫组化可见胞浆中第Ⅷ因子相关抗原呈阳性反应,证实培养的细胞为内皮细胞。结论:脐静脉灌注II型胶原酶消化法配合M199完全培养液可获得高纯度的内皮细胞,细胞可传代5—6次,但细胞产出量不高,不能传10代以上,5代以后细胞形态变化较大,对于复杂的基础研究应用受限。  相似文献   

7.
The localization of neuropeptide Y (NPY) and atrial natriuretic peptide (ANP) in the endothelial cells of human umbilical blood vessels was studied using the pre-embedding peroxidase-antiperoxidase (PAP) technique for electron microscopy and avidin-biotin-complex (ABC) immunostaining for endothelial cells cultured from umbilical vein. Subpopulations of NPY- and ANP-immunoreactive endothelial cells were present in term umbilical vein and artery. The umbilical vein contained more positive cells than the artery. The percentage of NPY- and ANP-immunoreactive umbilical vein cells in culture was 32% and 44%, respectively, out of a total of 3013 cells examined. The possibility that these potent vasoactive substances located in the endothelial cells of the non-innervated umbilical vessels are involved in the local regulation of blood flow is discussed.  相似文献   

8.
Endothelial cells isolated from human umbilical veins show a limited in vitro life span of about 40 population doublings. Cell division is dependent on the presence of endothelial cell growth factor in the culture medium. We have transfected primary endothelial cells with a plasmid containing the early region of SV40 virus. Large T positive cells were obtained which grew in the absence of endothelial cell growth factor at low serum concentrations and showed a prolonged lifespan. Expression of von Willebrand factor and SV40 large T antigen was detected simultaneously in transfected cells.  相似文献   

9.
Proper bone remodeling requires an active process of angiogenesis which in turn supplies the necessary growth factors and stem cells. This tissue cooperation suggests a cross‐talk between osteoblasts and endothelial cells. This work aims to identify the role of paracrine communication through vascular endothelial growth factor (VEGF) in co‐culture between osteoblastic and endothelial cells. Through a well defined direct contact co‐culture model between human osteoprogenitors (HOPs) and human umbilical vein endothelial cells (HUVECs), we observed that HUVECs were able to migrate along HOPs, inducing the formation of specific tubular‐like structures. VEGF165 gene expression was detected in the HOPs, was up‐regulated in the co‐cultured HOPs and both Flt‐1 and KDR gene expression increased in co‐cultured HUVECs. However, the cell rearrangement observed in co‐culture was promoted by a combination of soluble chemoattractive factors and not by VEGF165 alone. Despite having no observable effect on endothelial cell tubular‐like formation, VEGF appeared to have a crucial role in osteoblastic differentiation since the inhibition of its receptors reduced the co‐culture‐stimulated osteoblastic phenotype. This co‐culture system appears to enhance both primary angiogenesis events and osteoblastic differentiation, thus allowing for the development of new strategies in vascularized bone tissue engineering. J. Cell. Biochem. 106: 390–398, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Recombinant human transforming growth factor-beta (TGF-beta) was found to inhibit the adhesive phenotype of human umbilical vein endothelial cells for human PBL, purified T lymphocytes, and PHA-activated lymphoblasts. TGF-beta inhibited lymphocyte attachment to resting human umbilical vein endothelial cells and also to endothelial monolayers stimulated with the pro-inflammatory cytokines TNF-alpha and IL-1 beta. Our investigations also show that the ability of endothelial cells to respond to TGF-beta by altering their adhesiveness is lost with prolonged culture of the cells. However, this loss is selective as TGF-beta inhibits cell proliferation in both early and late passage endothelial cells. These results suggest that in vivo TGF-beta may inhibit the adhesive phenotype of endothelial cells and also may limit the immunologic response occurring at the endothelial cell barrier.  相似文献   

11.
Summary There is increasing interest in human umbilical cord vein as a source of endothelial cells. This paper shows that success in setting up cultures of human endothelial cells from umbilical cords depends not only on culture conditions, as so far proposed, but also on factors preceding the harvesting of the cells. In particular, the mother's smoking habit and the use of umbilical cord within 1 h of delivery have been shown to impair success of the culture. Age, parity, diabetes, and hypertension of the mother, type of delivery, and sex and weight of the newborn did not significantly influence the possibility of establishing successful endothelial cell culture. This work was supported by the Italian National Research Council, Grant 82.00151.04.  相似文献   

12.
Primary cilia are microtubule based sensory organelles that play an important role in maintaining cellular homeostasis. Malfunctioning results in a number of abnormalities, diseases (ciliopathies) and certain types of cancer. Morphological and biochemical knowledge on cilia/flagella, (early) ciliogenesis and intraflagellar transport is often obtained from model systems (e.g. Chlamydomonas) or from multi ciliary cells like lung or kidney epithelium.In this study endothelial cells in isolated human umbilical veins (HUVs) and cultured human umbilical vein endothelial cells (HUVECs) are compared and used to study primary ciliogenesis. By combining fluorescence microscopy, SEM, 2D and 3D TEM techniques we found that under the tested culturing conditions 60% of cobblestone endothelial cells form a primary cilium. Only a few of these cilia are present (protruding) on the endothelial cell surface, meaning that most primary cilia are in the cytoplasm (non-protruding). This was also observed in situ in the endothelial cells in the umbilical vein. The exact function(s?) of these non-protruding cilia remains unclear.Ultra-structural analysis of cultured HUVECs and the endothelial layer of the human umbilical veins reveal that there are: vesicles inside the ciliary pocket during the early stages of ciliogenesis; tubules/vesicles from the cytoplasm fuse with the ciliary sheath; irregular axoneme patterns, and two round, membranous vesicles inside the basal body.We conclude that cobblestone cultured HUVECs are comparable to the in vivo epithelial lining of the umbilical veins and therefore provide a well defined, relatively simple human model system with a reproducible number of non-protruding primary cilia for studying ciliogenesis.  相似文献   

13.
Spherulites are multilamellar vesicles consisting of concentric shells that can encapsulate small organic molecules or macromolecules. We investigate the possibility of targeting neutral spherulites to adherent culture cells by functionalizing their surface with RGD-containing ligands. The strength and specificity of association of RGD spherulites with several cell lines (EAhy 926 endothelial cell line, human umbilical vein endothelial cell (HUVEC) and human osteoprogenitor (HOP) primary cells) was studied, and the molecular interaction of RGD spherulites with the EAhy 926 cell surface was investigated. We show that, after binding to cells, spherulites are internalized.  相似文献   

14.
Vasculogenesis, the de novo growth of the primary vascular network from initially dispersed endothelial cells, is the first step in the development of the circulatory system in vertebrates. In the first stages of vasculogenesis, endothelial cells elongate and form a network-like structure, called the primary capillary plexus, which subsequently remodels, with the size of the vacancies between ribbons of endothelial cells coarsening over time. To isolate such intrinsic morphogenetic ability of endothelial cells from its regulation by long-range guidance cues and additional cell types, we use an in vitro model of human umbilical vein endothelial cells (HUVEC) in Matrigel. This quasi-two-dimensional endothelial cell culture model would most closely correspond to vasculogenesis in flat areas of the embryo like the yolk sac. Several studies have used continuum mathematical models to explore in vitro vasculogenesis: such models describe cell ensembles but ignore the endothelial cells' shapes and active surface fluctuations. While these models initially reproduce vascular-like morphologies, they eventually stabilize into a disconnected pattern of vascular "islands." Also, they fail to reproduce temporally correct network coarsening. Using a cell-centered computational model, we show that the endothelial cells' elongated shape is key to correct spatiotemporal in silico replication of stable vascular network growth. We validate our simulation results against HUVEC cultures using time-resolved image analysis and find that our simulations quantitatively reproduce in vitro vasculogenesis and subsequent in vitro remodeling.  相似文献   

15.
The adaptive response of endothelial cells to stress may lead to the upregulation of nitric oxide (NO) production. Herein, we report inducible nitric oxide synthase (iNOS) induction in primary cultures of human umbilical vein endothelial cells (HUVEC). The enzyme expression was earlier observed in 12-h cultures, reaching maximal levels after 3 days and decreasing when cells become confluent. The time course of NO production by HUVEC paralleled iNOS expression during the whole culture period, indicating that enzyme was functionally active. Conversely, iNOS induction could not be further detected in HUVEC subcultures passed once from cells presenting maximal levels of iNOS expression in the primary culture. Induction of iNOS in HUVEC was not related to lipopolysaccharide contamination, since the enzyme expression was not affected in the presence of polymyxin B added to primary cultures. Further analysis showed that aminoguanidine, a specific iNOS inhibitor, did not affect cell proliferation, suggesting that the NO produced by HUVEC may not be directly related to cell growth. Platelet endothelial cell adhesion molecule-1 expression was upregulated during cell confluence, in contrast to the decrease of iNOS expression and activity. The data suggest that iNOS expression may be a molecular mechanism mediating the adaptive response of endothelial cells to culture environment.  相似文献   

16.
Various types of microcarriers were tested as growth substrate for the cultivation of either endothelial cells from human umbilical cord veins or of EA. hy926, an immortalized cell line of endothelial origin. Cell growth was tested on microcarriers in tissue culture flasks and spinner flasks. Solid (Cytodex type I, II, III, Gelibeads, Mica) and macroporous (Polyhipe, CultiSpher GL, PolyporE type I) microcarriers were tested. For the solid carriers the best results were obtained with Mica and for the macroporous carriers with CultiSpher GL.Abbreviations DAPI 4,6-diamidino-2-phenylindole-di-hydrochloride - DEAE diethylaminoethyl - EC vascular endothelial cells - FGF fibroblast growth factor - HUVEC vascular endothelial cells from human umbilical cord veins - IF 11 mixture of Iscove's MDM and F12 basal media - NCS newborn calf serum - PBS phosphate buffered saline - TE 0.05% (w/v) trypsin, 0.02% (w/v) EDTA in PBS  相似文献   

17.
We have defined a signal responsible for the morphological differentiation of human umbilical vein and human dermal microvascular endothelial cells in vitro. We find that human umbilical vein endothelial cells deprived of growth factors undergo morphological differentiation with tube formation after 6-12 wk, and that human dermal microvascular endothelial cells differentiate after 1 wk of growth factor deprivation. Here, we report that morphological differentiation of both types of endothelial cells is markedly accelerated by culture on a reconstituted gel composed of basement membrane proteins. Under these conditions, tube formation begins in 1-2 h and is complete by 24 h. The tubes are maintained for greater than 2 wk. Little or no proliferation occurs under these conditions, although the cells, when trypsinized and replated on fibronectin-coated tissue culture dishes, resume division. Ultrastructurally, the tubes possess a lumen surrounded by endothelial cells attached to one another by junctional complexes. The cells possess Weibel-Palade bodies and factor VIII-related antigens, and take up acetylated low density lipoproteins. Tubule formation does not occur on tissue culture plastic coated with laminin or collagen IV, either alone or in combination, or on an agarose or a collagen I gel. However, endothelial cells cultured on a collagen I gel supplemented with laminin form tubules, while supplementation with collagen IV induces a lesser degree of tubule formation. Preincubation of endothelial cells with antibodies to laminin prevented tubule formation while antibodies to collagen IV were less inhibitory. Preincubation of endothelial cells with synthetic peptides derived from the laminin B1 chain that bind to the laminin cell surface receptor or incorporation of these peptides into the gel matrix blocked tubule formation, whereas control peptides did not. These observations indicate that endothelial cells can rapidly differentiate on a basement membrane-like matrix and that laminin is the principal factor in inducing this change.  相似文献   

18.
The umbilical cord represents the link between mother and fetus during pregnancy. This cord is usually discarded as a biological waste after the child’s birth; however, its importance as a “store house” of stem cells has been explored recently. We developed a method of simultaneous isolation of endothelial cells (ECs) from the vein and mesenchymal stem cells from umbilical cord Wharton’s jelly of the same cord. The isolation protocol has been simplified, modified, and improvised with respect to choice of enzyme and enzyme mixture, digestion time, cell yield, cell growth, and culture medium. Isolated human umbilical vascular ECs (hUVECs) were positive for von-Willibrand factor, a classical endothelial marker, and could form capillary-like structures when seeded on Matrigel, thus proving their functionality. The isolated human umbilical cord mesenchymal stem cells (hUCMSCs) were found positive for CD44, CD90, CD 73, and CD117 and were found negative for CD33, CD34, CD45, and CD105 surface markers; they were also positive for cytoskeleton markers of smooth muscle actin and vimentin. The hUCMSCs showed multilineage differentiation potential and differentiated into adipogenic, chondrogenic, osteogenic, and neuronal lineages under influence of lineage specific differentiation medium. Thus, isolating endothelial cells as well as mesenchymal cells from the same umbilical cord could lead to complete utilization of the available tissue for the tissue engineering and cell therapy.  相似文献   

19.
Summary Ladsin is a laminin-like cell-adhesive scatter factor with potent cell motility-stimulating ability and was purified from serum-free conditioned medium of a malignant human gastric adenocarcinoma cell line STKM-1. To test its possible role in tumor angiogenesis, we investigated its effect on primary culture of endothelial cells (human umbilical vein endothelial cells) and endothelial cell line ECV304 in this study. Cell adhesion and motility effects of ladsin were observed in both types of endothelial cells. In cell-attachment assay, ladsin interacted with integrin α3β1 that was expressed on the endothelial cell surface. In Boyden chambers, ladsin stimulated both directed and random migration of ECV304 cells. Ladsin induced repair of artificial wounds generated in ECV304 cell monolayers by stimulating cell migration. Ladsin did not affect the growth rate of ECV304 cells at a low cell density but significantly increased the saturation cell density. These results suggest that ladsin may be involved in the adhesion and migration of endothelial cells under some physiological and pathological conditions.  相似文献   

20.
Among the many tissue stem or progenitor cells recently being unveiled, endothelial progenitor cells (EPCs) have attracted particular attention, not only because of their cardinal role in vascular biology and embryology but also because of their potential use in the therapeutic development of a variety of postnatal diseases, including cardiovascular and peripheral vascular disorders and cancer. The aim of this study is to provide some basic and comprehensive information on gene expression of EPCs to characterize the cells in molecular terms. Here, we focus on EPCs derived from CD34-positive mononuclear cells of human umbilical cord blood. The EPCs were purified and expanded in culture and analyzed by a high-density oligonucleotide microarray and real-time RT-PCR analysis. We identified 169 up-regulated and 107 down-regulated genes in the EPCs compared with three differentiated endothelial cells of human umbilical vein endothelial cells (HUVEC), human lung microvascular endothelial cells (LMEC) and human aortic endothelial cells (AoEC). It is expected that the obtained list include key genes which are critical for EPC function and survival and thus potential targets of EPC recognition in vivo and therapeutic modulation of vasculogenesis in cancer as well as other diseases, in which de novo vasculogenesis plays a crucial role. For instance, the list includes Syk and galectin-3, which encode protein tyrosine kinase and β-galactoside-binding protein, respectively, and are expressed higher in EPCs than the three control endothelial cells. In situ hybridization showed that the genes were expressed in isolated cells in the fetal liver at E11.5 and E14.5 of mouse development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号