首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Three days after subcutaneous injection of N-nitroso-N-methylurethane (NNNMU) to induce lung injury, adult rabbits were mechanically ventilated and lung function was evaluated. Each animal then received either nebulized Survanta (Neb Surv), nebulized saline (Neb Saline), nebulized gas alone (Neb Gas), or tracheally instilled Survanta (Inst Surv). The ventilation efficiency index (VEI) value increased significantly compared with pretreatment values (P less than 0.01) over a 3-h treatment period for the Neb Surv animals, whereas VEI values for the other three groups decreased after treatment (P less than 0.05). Arterial PO2-to-fraction of inspired O2 ratios and dynamic compliance values significantly decreased after treatment for the Inst Surv group (P less than 0.05). Pressure-volume curves demonstrated a significantly greater volume at maximal pressure for the Neb Surv group compared with each of the other groups studied (P less than 0.01). The calculated quantity of surfactant recovered in lung tissue for the Neb Surv group was only 4.9 +/- 1.0 mg lipid/kg compared with 100 mg lipid/kg delivered to the Inst Surv group. Surfactant administered as an aerosol resulted in modest physiological improvements in this model of lung injury and was superior to the tracheal instillation technique.  相似文献   

3.
Lung liquid absorption at birthis crucial for the successful onset of respiration. Na absorption bythe renal collecting duct plays an important role in renal fluid andelectrolyte homeostasis during the early postnatal period. Theepithelial Na channel (ENaC) plays a central role in mediating thesefunctions, and its subunit expression is developmentally regulated in atemporal and tissue specific pattern. Several lines of evidence suggestthat the prenatal increase in circulating glucocorticoids may play animportant role in increasing ENaC expression during maturation. Wetested the role of the prenatal surge using corticotropin-releasinghormone (CRH) knockout (KO) mice. Relative ENaC expression in lungs of KO mice increased at the same rate as in wild-type (WT) mice, butabsolute expression was only 20-30% of WT. In contrast, relative and absolute expression of all three subunits in kidneys was not different between KO and WT mice. Dexamethasone (Dex) increased -ENaC mRNA in fetal lung and kidney explants within 24 h but had different effects on - or -ENaC. Dex increased - and-ENaC in lung, but only after >48 h of exposure, and had no effecton kidney. The results suggest that the kidney metabolizes endogenous glucocorticoids, but the lung does not. Furthermore, the marked difference between lung and kidney responsiveness to glucocorticoids in- and -ENaC expression suggests that factors other than steroids may be important in regulating functional ENaC expression during development.

  相似文献   

4.
The influence of liposome-entrapped catalase and/or superoxide dismutase on phospholipids of the lung surfactant in bleomycin-treated rats was investigated. Changes in phospholipid composition of lung surfactant were much pronounced in animals supplemented with antioxidant enzymes-loaded liposomes. It is suggested that liposomes are good carriers for drugs in bleomycin-induced lung injury treatment.  相似文献   

5.
6.
7.
《Free radical research》2013,47(9):1027-1035
Abstract

To date, the role that NO derived from endothelial NO synthase (eNOS) plays in the development of the injuries occurring under hypoxia/reoxygenation (H/R) in the lung remains unknown and thus constitutes the subject of the present work. A follow-up study was conducted in Wistar rats submitted to H/R (hypoxia for 30 min; reoxygenation of 0 h, 48 h and 5 days), with or without prior treatment using the eNOS inhibitor L-NIO (20 mg/kg). Lipid peroxidation, apoptosis, protein nitration and NO production (NOx) were analysed. The results showed that L-NIO administration lowered NOx levels in all the experimental groups. Contrarily, the lipid peroxidation level and the percentage of apoptotic cells rose, implying that eNOS-derived NO may have a protective effect against the injuries occurring during H/R in the lung. These findings could open the possibility of future studies to design new therapies for this type of hypoxia based on NO-pharmacology.  相似文献   

8.
Increased cellular generation of partially reduced species of oxygen mediates the toxicity of hyperoxia to cultured endothelial cells and rats exposed to 95-100% oxygen. Liposomal entrapment and intracellular delivery of superoxide dismutase (SOD) to cultured porcine aortic endothelial cells increased the specific activity of cellular SOD up to 15-fold. The liposome-mediated augmentation of SOD activity persisted in cell monolayers and rendered these cells resistant to oxygen-induced injury in a cell SOD activity-dependent manner. Addition of free SOD to culture medium had no effect on cell SOD activity or resistance to oxygen toxicity. SOD and catalase-containing liposomes injected i.v. into rats increased lung-associated enzyme specific activities two- to fourfold. Liposome entrapment of both SOD and catalase significantly increased the circulating half-lives of these enzymes and was critical for prevention of in vivo oxygen toxicity. Free SOD and catalase injected i.v. in the absence or presence of control liposomes did not increase corresponding lung enzyme activities or survival time in 100% oxygen. These studies show that O2- and H2O2 are important mediators of oxygen toxicity and that intracellular delivery of oxygen protective enzymes can reduce tissue injury owing to overproduction of partially reduced oxygen species.  相似文献   

9.
Mitochondrial catalase and oxidative injury   总被引:2,自引:0,他引:2  
Mitochondria dysfunction induced by reactive oxygen species (ROS) is related to many human diseases and aging. In physiological conditions, the mitochondrial respiratory chain is the major source of ROS. ROS could be reduced by intracellular antioxidant enzymes including superoxide dismutase, glutathione peroxidase and catalase as well as some antioxidant molecules like glutathione and vitamin E. However, in pathological conditions, these antioxidants are often unable to deal with the large amount of ROS produced. This inefficiency of antioxidants is even more serious in mitochondria, because mitochondria in most cells lack catalase. Therefore, the excessive production of hydrogen peroxide in mitochondria will damage lipid, proteins and mDNA, which can then cause cells to die of necrosis or apoptosis. In order to study the important role of mitochondrial catalase in protecting cells from oxidative injury, a HepG2 cell line overexpressing catalase in mitochondria was developed by stable transfection of a plasmid containing catalase cDNA linked with a mitochondria leader sequence which would encode a signal peptide to lead catalase into the mitochondria. Mitochondria catalase was shown to protect cells from oxidative injury induced by hydrogen peroxide and antimycin A. However, it increased the sensitivity of cells to tumor necrosis factor-alpha-induced apoptosis by changing the redox-oxidative status in the mitochondria. Therefore, the antioxidative effectiveness of catalase when expressed in the mitochondrial compartment is dependent upon the oxidant and the locus of ROS production.  相似文献   

10.
Pulmonary surfactant replacement has previously been shown to be effective in the human neonatal respiratory distress syndrome. The value of surfactant replacement in models of acute lung injury other than quantitative surfactant deficiency states is, however, uncertain. In this study an acute lung injury model using rats with chronic indwelling arterial catheters, injured with N-nitroso-N-methylurethane (NNNMU), has been developed. The NNNMU injury was found to produce hypoxia, increased mortality, an alveolitis, and alterations in the pulmonary surfactant system. Alterations of surfactant obtained by bronchoalveolar lavage included a reduction in the phospholipid-to-protein ratio, reduced surface activity, and alterations in the relative percentages of the individual phospholipids compared with controls. Treatment of the NNNMU-injured rats with instilled exogenous surfactant (Survanta) improved oxygenation; reduced mortality to control values; and returned the surfactant phospholipid-to-protein ratio, surface activity, and, with the exception of phosphatidylglycerol, the relative percentages of individual surfactant phospholipids to control values.  相似文献   

11.
12.
Rapid repair of the denuded alveolar surface after injury is a key to survival. The respiratory tract contains several sources of endogenous adult stem cells residing within the basal layer of the upper airways, within or near pulmonary neuroendocrine cell rests, at the bronchoalveolar junction, and within the alveolar epithelial surface, which contribute to the repair of the airway wall. Bone marrow-derived adult mesenchymal stem cells circulating in blood are also involved in tracheal regeneration. However, an organism is frequently incapable of repairing serious damage and defects of the respiratory tract resulting from acute trauma, lung cancers, and chronic pulmonary and airway diseases. Therefore, replacement of the tracheal tissue should be urgently considered. The shortage of donor trachea remains a major obstacle in tracheal transplantation. However, implementation of tissue engineering and stem cell therapy-based approaches helps to successfully solve this problem. To date, huge progress has been achieved in tracheal bioengineering. Several sources of stem cells have been used for transplantation and airway reconstitution in animal models with experimentally induced tracheal defects. Most tracheal tissue engineering approaches use biodegradable three-dimensional scaffolds, which are important for neotracheal formation by promoting cell attachment, cell redifferentiation, and production of the extracellular matrix. The advances in tracheal bioengineering recently resulted in successful transplantation of the world's first bioengineered trachea. Current trends in tracheal transplantation include the use of autologous cells, development of bioactive cell-free scaffolds capable of supporting activation and differentiation of host stem cells on the site of injury, with a future perspective of using human native sites as micro-niche for potentiation of the human body's site-specific response by sequential adding, boosting, permissive, and recruitment impulses.  相似文献   

13.
Limitation of reactive oxygen species-mediated ischemia-reperfusion (I/R) injury of the lung by vascular immunotargeting of antioxidative enzymes has the potential to become a promising modality for extension of the viability of banked transplantation tissue. The preferential expression of angiotensin-converting enzyme (ACE) in pulmonary capillaries makes it an ideal target for therapy directed toward the pulmonary endothelium. Conjugates of ACE monoclonal antibody (MAb) 9B9 with catalase (9B9-CAT) have been evaluated in vivo for limitation of lung I/R injury in rats. Ischemia of the right lung was induced for 60 min followed by 120 min of reperfusion. Sham-operated animals (sham, n = 6) were compared with ischemia-reperfused untreated animals (I/R, n = 6), I/R animals treated with biotinylated catalase (CAT, n = 6), and I/R rats treated with the conjugates (9B9-CAT, n = 6). The 9B9-CAT accumulation in the pulmonary endothelium of injured lungs was elucidated immunohistochemically. Arterial oxygenation during reperfusion was significantly higher in 9B9-CAT (221 +/- 36 mmHg) and sham (215 +/- 16 mmHg; P < 0.001 for both) compared with I/R (110 +/- 10 mmHg) and CAT (114 +/- 30 mmHg). Wet-dry weight ratio of I/R (6.78 +/- 0.94%) and CAT (6.54 +/- 0.87%) was significantly higher than of sham (4.85 +/- 0.29%; P < 0.05), which did not differ from 9B9-CAT (5.58 +/- 0.80%). The significantly lower degree of lung injury in 9B9-CAT-treated animals compared with I/R rats was also shown by decreased serum levels of endothelin-1 (sham, 18 +/- 9 fmol/mg; I/R, 42 +/- 12 fmol/mg; CAT, 36 +/- 11 fmol/mg; 9B9-CAT, 26 +/- 9 fmol/mg; P < 0.01) and mRNA for inducible nitric oxide synthase (iNOS) [iNOS-GAPDH ratio: sham, 0.15 +/- 0.06 arbitrary units (a.u.); I/R, 0.33 +/- 0.08 a.u.; CAT, 0.26 +/- 0.05 a.u.; 9B9-CAT, 0.14 +/- 0.04 a.u.; P < 0.001]. These results validate immunotargeting by anti-ACE conjugates as a prospective and specific strategy to augment antioxidative defenses of the pulmonary endothelium in vivo.  相似文献   

14.
15.
The endogenous indol-3yl-acetic acid (IAA) of detipped apical segments from roots of maize (cv ORLA) was greatly reduced by an exodiffusion technique which depended upon the preferential acropetal transport of the phytohormone into buffered agar. When IAA was applied to the basal cut ends of freshly prepared root segments only growth inhibitions were demonstrable but after the endogenous auxin concentration had been reduced by the exodiffusion technique it became possible to stimulate growth by IAA application. The implications of the interaction between exogenous and endogenous IAA in the control of root segment growth are discussed with special reference to the role of endogenous IAA in the regulation of root growth and geotropism.Abbreviations IAA indol-3yl-acetic acid - GC-MS gas chromatography-mass spectrometry  相似文献   

16.
It is clear from researching the vertical transmission of Neospora caninum in cattle that the terms 'vertical', 'congenital' and, indeed, 'transplacental' are inadequate for describing two extremely different situations that have fundamentally different immunological, epidemiological and control implications. A similar situation pertains to Toxoplasma gondii in different hosts. We advocate the use of the terms 'endogenous transplacental infection (TPI)' to define foetal infection from a recrudescent maternal infection acquired before pregnancy (and probably prenatally) and 'exogenous TPI' to define foetal infection that occurs as a result of an infection of the dam during pregnancy.  相似文献   

17.
The relationship between the endogenous cytoplasmic levels of the enzymes superoxide dismutase and catalase and the inhibition of cell proliferation by radiation has been studied in 11 mouse cell lines. The resistance of these mouse cell lines to radiation was found to vary by over 25-fold. No correlation was found between the cytoplasmic level of CuZn-superoxide dismutase or catalase and the resistance to radiation as measured by extrapolation number (EN), quasi-threshold dose (Dq), or DO. None of the cell lines had detectable cytoplasmic Mn-superoxide dismutase. The apparent Ki of potassium cyanide for mouse CuZn-superoxide dismutase was determined (Ki = 6.5 mumol dm-3).  相似文献   

18.
目的:探讨内、外源性硫化氢(H2S)在脂多糖(LPS)所致大鼠急性肺损伤(ALI)中的作用并初探其机制。方法:将120只SD大鼠随机分为对照组、IPS组(经气管内滴注LPS复制ALI模型)、NaHS+LPS组和炔丙基甘氨酸(PPG)+LPS组。给药后4h或8h处死动物,测定肺系数;光镜观察肺组织形态学改变;化学法检测血浆H2S、NO和CO含量、肺组织丙二醛(MDA)含量、胱硫醚-γ-裂解酶(CSE)、诱导型一氧化氮合酶(iNOS)和血红素加氧酶(HO)活性以及支气管肺泡灌洗液(BALF)中中性粒细胞(PMN)数目和蛋白含量的变化;用免疫组织化学法检测肺组织iNOS、HO-1蛋白表达。再将血浆H2S含量与上述指标进行相关性分析。结果:气管内滴注LPS可引起肺组织明显的形态学改变;肺系数和肺组织MDA含量增加;BALF中PMN数目和蛋白含量增加;血浆H2S含量和肺组织CSE活性下降;肺组织iNOS活性、HO活性和iNOS蛋白表达、HO-1蛋白表达增强,血浆NO含量、CO含量增加。预先给予NaHS可显著减轻LPS所致上述指标的改变;而预先给予PIG可加重LPS所致肺损伤,使BALF中PMN数目和蛋白含量、血浆NO含量、肺组织iNOS活性和iNOS蛋白表达进一步增加,但对血浆CO含量、肺组织HO活性和HO-1蛋白表达无明显影响。HS含量与CSE活性、血浆CO含量、肺组织HO-1活性呈正相关(r值=0.945—0.987,P均〈0.01);与其他指标呈负相关(r值=-0.994~-0.943,P均〈0.01)。结论:H2S/CSE体系的下调在LPS所致大鼠Ⅲ的发病学中有一定作用,内、外源性H2S具有抗LPS所致Au的作用,该作用可能与其抗氧化效应、减轻PMN所致肺过度的炎症反应以及下调NO/iNOS体系、上调CO/HO—1体系有一定关系。  相似文献   

19.
20.
The specific contribution of each antioxidant enzyme to protection against the reoxygenation-associated oxidative stress after periods of hypoxia is not well understood. We assessed the physiological role of catalase during posthypoxic reoxygenation by the combination of two approaches. First, catalase activity of Nile tilapias (Oreochromis niloticus) was 90% suppressed by intraperitoneal injection of 3-amino-1,2,4-triazole (ATZ, 1g/kg). In ATZ-injected fish, liver GSH levels, oxidative stress markers, and activities of other antioxidant enzymes remained unchanged. Second, animals with depleted catalase activity (or those saline-injected) were subjected to a cycle of severe hypoxia (dissolved O(2) = 0.28 mg/l for 3 h) followed by reoxygenation (0.5 to 24 h). Hypoxia did not induce changes in the above-mentioned parameters, either in saline- or in ATZ-injected animals. Reoxygenation increased superoxide dismutase activity in saline-injected fish, whose levels were similar to ATZ-injected animals. The activities of glutathione S-transferase, selenium-dependent glutathione peroxidase, and total-GPX and the levels of GSH-eq, GSSG, and thiobarbituric acid reactive substances remained unchanged during reoxygenation in both saline- and ATZ-injected fish. The GSSG/GSH-eq ratio in ATZ-injected fish increased at 30 min of reoxygenation compared with saline-injected ones. Reoxygenation also increased carbonyl protein levels in saline-injected fish, whose levels were similar to the ATZ-injected group. Our work shows that inhibition of liver tilapia catalase causes a redox imbalance during reoxygenation, which is insufficient to induce further oxidative stress. This indicates the relevance of hepatic catalase for hypoxia/reoxygenation stress in tilapia fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号