首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 428 毫秒
1.
Vascular endothelial growth factor (VEGF) utilizes a phosphoinositide 3-kinase (PI 3-kinase)/Akt signaling pathway to protect endothelial cells from apoptotic death. Here we show that PI 3-kinase/Akt signaling promotes endothelial cell survival by inhibiting p38 mitogen-activated protein kinase (MAPK)-dependent apoptosis. Blockade of the PI 3-kinase or Akt pathways in conjunction with serum withdrawal stimulates p38-dependent apoptosis. Blockade of PI 3-kinase/Akt also led to enhanced VEGF activation of p38 and apoptosis. In this context, the pro-apoptotic effect of VEGF is attenuated by the p38 MAPK inhibitor SB203580. VEGF stimulation of endothelial cells or infection with an adenovirus expressing constitutively active Akt causes MEKK3 phosphorylation, which is associated with decreased MEKK3 kinase activity and down-regulation of MKK3/6 and p38 MAPK activation. Conversely, activation-deficient Akt decreases VEGF-stimulated MEKK3 phosphorylation and increases MKK/p38 activation. Activation of MKK3/6 is not dependent on Rac activation since dominant negative Rac does not decrease p38 activation triggered by inhibition of PI 3-kinase. Thus, cross-talk between the Akt and p38 MAPK pathways may regulate the level of cytoprotection versus apoptosis and is a new mechanism to explain the cytoprotective actions of Akt.  相似文献   

2.
3.
Lewis Y (LeY) is a carbohydrate tumor‐asssociated antigen. The majority of cancer cells derived from epithelial tissue express LeY type difucosylated oligosaccharide. Fucosyltransferase IV (FUT4) is an essential enzyme that catalyzes the synthesis of LeY oligosaccharide. Our previous studies have shown that FUT4 overexpression promotes A431 cell proliferation, but the mechanism is still largely unknown. Herein, we investigated the role of the mitogen‐activated protein kinases (MAPKs) and phosphoinositide‐3 kinase (PI3K)/Akt signaling pathways on FUT4‐induced cell proliferation. Results show that overexpression of FUT4 increases the phosphorylation of ERK1/2, p38 MAPK, and PI3K/Akt. Inhibitors of PI3K (LY294002 and Wortmannin) prevented the phosphorylation of ERK1/2, p38 MAPK, and Akt PI3K). Moreover, phosphorylation of Akt is abolished by inhibitors of ERK1/2 (PD98059) and p38 MAPK (SB203580). These data suggested that FUT4 not only activates MAPK and PI3K/Akt signals, but also promotes the crosstalk among these signaling pathways. In addition, FUT4‐induced stimulation of cell proliferation correlates with increased cell cycle progression by promoting cells into S‐phase. The mechanism involves in increased expression of cyclin D1, cyclin E, CDK 2, CDK 4, and pRb, and decreased level of cyclin‐dependent kinases inhibitors p21 and p27, which are blocked by the inhibitors of upstream signal molecules, MAPK and PI3K/Akt. In conclusion, these studies suggest that FUT4 regulates A431 cell growth through controlling cell cycle progression via MAPK and PI3K/Akt signaling pathways. J. Cell. Physiol. 225: 612–619, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Human neutrophil peptides (HNP) kill microorganisms but also modulate immune responses through upregulation of the chemokine IL-8 by activation of the nucleotide P2Y(6) receptor. However, the intracellular signaling mechanisms remain yet to be determined. Human lung epithelial cells (A549) and monocytes (U937) were stimulated with HNP in the absence and presence of the specific kinase inhibitors for Src, extracellular signal-regulated kinase-1 and -2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinases (JNK), and Akt. HNP induced a rapid phosphorylation of the kinases in both cell types associated with a dose-dependent, selective production of IL-8 among 10 cytokines assayed. The HNP-induced IL-8 production was blocked by the Src tyrosine kinase inhibitor PP2, MEK1/2 inhibitor U0126, and the phosphatidylinositol 3 kinase (PI3K) inhibitor LY294002, but not by the JNK inhibitor SP600125 in both cell types. Treatment with the p38 inhibitor SB203580 attenuated the HNP-induced IL-8 production only in monocytes. Blockade of Src kinase blunted HNP-induced phosphorylation of the ERK1/2 and Akt but not p38 in monocytes. In contrast, Src inhibition had no effect on phosphorylation of the other kinases in the lung epithelial cells. We conclude that the activation of ERK1/2 and PI3K/Akt pathways is required for HNP-induced IL-8 release which occurs in a Src-independent manner in lung epithelial cells, while is Src-dependent in monocytes.  相似文献   

5.
Cyclooxygenase 2 (COX-2) expression is induced by physiological and inflammatory stimuli. Regulation of COX-2 expression is stimulus and cell type specific. Exposure to Zn2+ has been associated with activation of multiple intracellular signaling pathways as well as the induction of COX-2 expression. This study aims to elucidate the role of intracellular signaling pathways in Zn2+-induced COX-2 expression in human bronchial epithelial cells. Inhibitors of the phosphatidylinositol 3-kinase (PI3K) potently block Zn2+-induced COX-2 mRNA and protein expression. Overexpression of adenoviral constructs encoding dominant-negative Akt kinase downstream of PI3K or wild-type phosphatase and tensin homolog deleted on chromosome 10, an important PI3K phosphatase, suppresses COX-2 mRNA expression induced by Zn2+. Zn2+ exposure induces phosphorylation of the tyrosine kinases, including Src and EGF receptor (EGFR), and the p38 mitogen-activated protein kinase. Blockage of these kinases results in inhibition of Zn2+-induced Akt phosphorylation as well as COX-2 protein expression. Overexpression of dominant negative p38 constructs suppresses Zn2+-induced increase in COX-2 promoter activity. In contrast, the c-Jun NH2-terminal kinase and the extracellular signal-regulated kinases have minimal effect on Akt phosphorylation and COX-2 expression. Inhibition of p38, Src, and EGFR kinases with pharmacological inhibitors markedly reduces Akt phosphorylation induced by Zn2+. However, the PI3K inhibitors do not show inhibitory effects on p38, Src, and EGFR. These data suggest that p38 and EGFR kinase-mediated Akt activation is required for Zn2+-induced COX-2 expression and that the PI3K/Akt signaling pathway plays a central role in this event.  相似文献   

6.
Recently we have demonstrated that sodium arsenite induces the expression of hypoxia-inducible factor 1alpha (HIF-1alpha) protein and vascular endothelial growth factor (VEGF) in OVCAR-3 human ovarian cancer cells. We now show that arsenic trioxide, an experimental anticancer drug, exerts the same effects. The involvement of phosphatidylinositol 3-kinase and mitogen-activated protein kinase (MAPK) pathways in the effects of sodium arsenite was investigated. By using kinase inhibitors in OVCAR-3 cells, both effects of sodium arsenite were found to be independent of phosphatidylinositol 3-kinase and p44/p42 MAPKS but were attenuated by inhibition of p38 MAPK. A role for p38 in the regulation of HIF-1alpha and VEGF expression was supported further by analysis of activation kinetics. Experiments in mouse fibroblast cell lines, lacking expression of c-Jun N-terminal kinases 1 and 2, suggested that these kinases are not required for induction of HIF-1alpha protein and VEGF mRNA. Unexpectedly, sodium arsenite did not activate a HIF-1-dependent reporter gene in OVCAR-3 cells, indicating that functional HIF-1 was not induced. In agreement with this hypothesis, up-regulation of VEGF mRNA was not reduced in HIF-1alpha(-/-) mouse fibroblast cell lines. Altogether, these data suggest that not HIF-1, but rather p38, mediates induction of VEGF mRNA expression by sodium arsenite.  相似文献   

7.
8.
Activation of either the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt or the p38 mitogen-activated protein kinase (MAPK) signaling pathways accelerates myogenesis but only when the reciprocal pathway is functional. We therefore examined the hypothesis that cross-activation between these signaling cascades occurs to orchestrate myogenesis. We reveal a novel and reciprocal cross-talk and activation between the PI 3-kinase/Akt and p38 MAPK pathways that is essential for efficient myoblast differentiation. During myoblast differentiation, Akt kinase activity correlated with S473 but not T308 phosphorylation and occurred 24 h after p38 activation. Inhibition or activation of p38 with SB203580, dominant-negative p38, or MKK6EE regulated Akt kinase activity. Analysis of Akt isoforms revealed a specific increase in Akt2 protein levels that coincided with AktS473 phosphorylation during myogenesis and an enrichment of S473-phosphorylated Akt2. Akt2 promoter activity and protein levels were regulated by p38 activation, thus providing a mechanism for communication. Subsequent Akt activation by S473 phosphorylation was PI 3-kinase dependent and specific for Akt2 rather than Akt1. Complementary to p38-mediated transactivation of Akt, activation or inhibition of PI 3-kinase regulated p38 activity upstream of MKK6, demonstrating reciprocal communication and positive feedback characteristic of myogenic regulation. Our findings have identified novel communication between p38 MAPK and PI 3-kinase/Akt via Akt2.  相似文献   

9.
10.
As experimental evidence suggests that leptin may have direct effects on peripheral tissues, we investigated some of the transductional molecules induced by leptin in C2C12 cells. In immunoprecipitation experiments using anti-p85 antibodies (a regulatory subunit of phosphatidylinositol-3-kinase; PI3K), we observed a significant increase in PI3K activity. Immunoblot analyses showed that Akt, GSK3, ERK1, ERK2, and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation significantly increased after leptin treatment. Protein kinase C (PKC)-zeta was also activated by leptin, as documented by an immunocomplex kinase assay and immunoblotting experiments. The treatment of C2C12 cells with Wortmannin before leptin administration inhibited induction of the phosphorylation of ERKs (extracellular signal-regulated kinases) but not that of p38 MAPK, whereas pre-treatment with a PKC-zeta inhibitor partially decreased ERK phosphorylation. Taken together, our in vitro results further support the hypothesis that leptin acts acutely on skeletal muscle tissue through some of the components of insulin signalling, including PKC-zeta.  相似文献   

11.
Monocyte chemotactic protein-1 (MCP-1) recruits activated phagocytes to the site of tissue injury. Interferon-gamma (IFN-gamma) present in the microenvironment of glomerulus acts on mesangial cells to induce local production of MCP-1. The mechanism by which IFN-gamma stimulates expression of MCP-1 is not clear. We therefore examined the role of PI 3 kinase signaling in regulating the IFN-gamma-induced MCP-1 expression in mesangial cells. Blocking PI 3 kinase activity with Ly294002 attenuated IFN-gamma-induced MCP-1 protein and mRNA expression. IFN-gamma increased Akt kinase activity in a PI 3 kinase-dependent manner. Expression of dominant negative Akt kinase inhibited serine phosphorylation of STAT1alpha, without any effect on its tyrosine phosphorylation, and decreased IFN-gamma-induced expression of MCP-1. These data for the first time indicate a role for PI 3 kinase-dependent Akt kinase in MCP-1 expression. We have recently shown that along with Akt, PKCepsilon is a downstream target of PI 3 kinase in IFN-gamma signaling. Similar to dominant negative Akt kinase, dominant negative PKCepsilon also inhibited serine phosphorylation of STAT1alpha without any effect on tyrosine phosphorylation. Dominant negative PKCepsilon also abrogated MAPK activity, resulting in decrease in IFN-gamma-induced MCP-1 expression. Furthermore, Akt and PKCepsilon are present together in a signaling complex. IFN-gamma had no effect on this complex formation, but did increase PKCepsilon-associated Akt kinase activity. PKCepsilon did not regulate IFN-gamma-induced Akt kinase. Finally, expression of dominant negative Akt kinase blocked IFN-gamma-stimulated MAPK activation. These data provide the first evidence that PI 3 kinase-dependent Akt and PKCepsilon activation independently regulate MAPK activity and serine phosphorylation of STAT1alpha to increase expression of MCP-1.  相似文献   

12.
Doxorubicin is the anthracycline with the widest spectrum of antitumor activity, and it has been shown that the antitumor activity is mediated in vivo by selective triggering of apoptosis in proliferating endothelial cells. We studied cultured human endothelial cells and observed that doxorubicin-induced apoptosis was mediated by p38 mitogen-activated protein kinase (MAPK). Doxorubicin-provoked apoptosis was significantly inhibited by expression of dominant negative p38 MAPK or pharmacological inhibition with SB203580. Furthermore, blocking phosphatidylinositol-3-kinase/Akt signaling significantly increased doxorubicin-induced caspase-3 activity and cell death, indicating that Akt is a survival factor in this system. Notably, we also found that doxorubicin-provoked apoptosis included p38 MAPK-mediated inhibition of Akt and Bad phosphorylation. Furthermore, doxorubicin-stimulated phosphorylation of Bad in cells expressing dominant negative p38 MAPK was impeded by the inhibition of PI3-K. In addition to the impact on Bad phosphorylation, doxorubicin-treatment caused p38 MAPK-dependent downregulation of Bcl-xL protein.  相似文献   

13.
Phosphatidylinositol (PI) 3-kinase is required for insulin-stimulated translocation of GLUT4 to the surface of muscle and fat cells. Recent evidence suggests that the full stimulation of glucose uptake by insulin also requires activation of GLUT4, possibly via a p38 mitogen-activated protein kinase (p38 MAPK)-dependent pathway. Here we used L6 myotubes expressing Myc-tagged GLUT4 to examine at what level the signals regulating GLUT4 translocation and activation bifurcate. We compared the sensitivity of each process, as well as of signals leading to GLUT4 translocation (Akt and atypical protein kinase C) to PI 3-kinase inhibition. Wortmannin inhibited insulin-stimulated glucose uptake with an IC(50) of 3 nm. In contrast, GLUT4myc appearance at the cell surface was less sensitive to inhibition (IC(50) = 43 nm). This dissociation between insulin-stimulated glucose uptake and GLUT4myc translocation was not observed with LY294002 (IC(50) = 8 and 10 microm, respectively). The sensitivity of insulin-stimulated activation of PKC zeta/lambda, Akt1, Akt2, and Akt3 to wortmannin (IC(50) = 24, 30, 35, and 60 nm, respectively) correlated closely with inhibition of GLUT4 translocation. In contrast, insulin-dependent p38 MAPK phosphorylation was efficiently reduced in cells pretreated with wortmannin, with an IC(50) of 7 nm. Insulin-dependent p38 alpha and p38 beta MAPK activities were also markedly reduced by wortmannin (IC(50) = 6 and 2 nm, respectively). LY294002 or transient expression of a dominant inhibitory PI 3-kinase construct (Delta p85), however, did not affect p38 MAPK phosphorylation. These results uncover a striking correlation between PI 3-kinase, Akt, PKC zeta/lambda, and GLUT4 translocation on one hand and their segregation from glucose uptake and p38 MAPK activation on the other, based on their wortmannin sensitivity. We propose that a distinct, high affinity target of wortmannin, other than PI 3-kinase, may be necessary for activation of p38 MAPK and GLUT4 in response to insulin.  相似文献   

14.
Activation of group IV cytosolic phospholipase A(2) (gIV-PLA(2)) is the essential first step in the synthesis of inflammatory eicosanoids and in integrin-mediated adhesion of leukocytes. Prior investigations have demonstrated that phosphorylation of gIV-PLA(2) results from activation of at least two isoforms of mitogen-activated protein kinase (MAPK). We investigated the potential role of phosphoinositide 3-kinase (PI3K) in the activation of gIV-PLA(2) and the hydrolysis of membrane phosphatidylcholine in fMLP-stimulated human blood eosinophils. Transduction into eosinophils of Deltap85, a dominant negative form of class IA PI3K adaptor subunit, fused to an HIV-TAT protein transduction domain (TAT-Deltap85) concentration dependently inhibited fMLP-stimulated phosphorylation of protein kinase B, a downstream target of PI3K. FMLP caused increased arachidonic acid (AA) release and secretion of leukotriene C(4) (LTC(4)). TAT-Deltap85 and LY294002, a PI3K inhibitor, blocked the phosphorylation of gIV-PLA(2) at Ser(505) caused by fMLP, thus inhibiting gIV-PLA(2) hydrolysis and production of AA and LTC(4) in eosinophils. FMLP also caused extracellular signal-related kinases 1 and 2 and p38 MAPK phosphorylation in eosinophils; however, neither phosphorylation of extracellular signal-related kinases 1 and 2 nor p38 was inhibited by TAT-Deltap85 or LY294002. Inhibition of 1) p70 S6 kinase by rapamycin, 2) protein kinase B by Akt inhibitor, or 3) protein kinase C by Ro-31-8220, the potential downstream targets of PI3K for activation of gIV-PLA(2), had no effect on AA release or LTC(4) secretion caused by fMLP. We find that PI3K is required for gIV-PLA(2) activation and hydrolytic production of AA in activated eosinophils. Our data suggest that this essential PI3K independently activates gIV-PLA(2) through a pathway that does not involve MAPK.  相似文献   

15.
Placental blood flow, nitric-oxide (NO) levels, and endothelial NO synthase (eNOS) expression increase during human and ovine pregnancy. Shear stress stimulates NO production and eNOS expression in ovine fetoplacental artery endothelial (OFPAE) cells. Because eNOS is the rate-limiting enzyme essential for NO synthesis, its activity and expression are both closely regulated. We investigated signaling mechanisms underlying pulsatile shear stress-induced increases in eNOS phosphorylation and protein expression by OFPAE cells. The OFPAE cells were cultured at 3 dynes/cm2 shear stress, then exposed to 15 dynes/cm2 shear stress. Western blot analysis for phosphorylated ERK1/2, Akt, p38 mitogen activated protein kinase (MAPK), and eNOS showed that shear stress rapidly increased phosphorylation of ERK1/2 and Akt but not of p38 MAPK. Phosphorylation of eNOS Ser1177 under shear stress was elevated by 20 min, a response that was blocked by the phosphatidyl inositol-3-kinase (PI-3K)-inhibitors wortmannin and LY294002 but not by the mitogen activated protein kinase kinase (MEK)-inhibitor UO126. Basic fibroblast growth factor (bFGF) enhanced eNOS protein levels in static culture via a MEK-mediated mechanism, but it could not further augment the elevated eNOS protein levels otherwise induced by the 15 dynes/cm2 shear stress. Blockade of either signaling pathway changed the shear stress-induced increase in eNOS protein levels. In conclusion, shear stress induced rapid eNOS phosphorylation on Ser1177 in OFPAE cells through a PI-3K-dependent pathway. The bFGF-induced rise in eNOS protein levels in static culture was much less than those observed under flow and was blocked by inhibition of MEK. Prolonged shear stress-stimulated increases in eNOS protein were not affected by inhibition of MEK- or PI-3K-mediated pathways.  相似文献   

16.
PGE2 plays a critical role in colorectal carcinogenesis. We have previously shown that COX-2 expression and PGE2 synthesis are mediated by IGF-II/IGF-I receptor signaling in the Caco-2 cell line and that the pathway of phosphatidylinositol 3-kinase (PI3K)/Akt protects the cell from apoptosis. In the present study, we demonstrate that PGE2 has the ability to increase Ras and PI3K association and decrease the level of apoptosis in the same experimental system. The effect of PGE2 on PI3K/Ras association is dependent on the activation of EP4 receptor, the increase of cAMP levels, and the activation of PKA. In fact, treatment of cells with the PKA inhibitor H89 decreases the association of Ras and PI3K and Ras-associated PI3K activity. PKA inhibitor H89 is able to decrease threonine phosphorylation of Akt and to increase serine phosphorylation of Akt by p38 MAPK and counteracts the cytoprotective effect induced by PGE2. In addition, PGE2 is able to activate p38 MAPK and the inhibition of p38 MAPK, with SB203580 specific inhibitor or with dominant negative MKK6 kinase, is able to revert the apoptotic effect of H89 and serine phosphorylation of Akt. The effect of PGE2 on Caco-2 cell survival through PKA activation is mediated and regulated by the balance of threonine/serine phosphorylation of Akt by p38 kinase and PI3K. In conclusion, our data elucidate a novel mechanism for regulation of colon cancer cell survival and provide evidences for new combinatory treatments of colon cancer.  相似文献   

17.
In our previous study, bradykinin (BK) exerts its mitogenic effect through Ras/Raf/MEK/MAPK pathway in vascular smooth muscle cells (VSMCs). In addition to this pathway, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3-K) have been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we investigated whether these different mechanisms participating in BK-induced activation of p42/p44 MAPK and cell proliferation in VSMCs. We initially observed that BK- and EGF-dependent activation of Src, EGFR, Akt, and p42/p44 MAPK and [3H]thymidine incorporation were mediated by Src and EGFR, because the Src inhibitor PP1 and EGFR kinase inhibitor AG1478 abrogated BK- and EGF-dependent effects. Inhibition of PI3-K by LY294002 attenuated BK-induced Akt and p42/p44 MAPK phosphorylation and [3H]thymidine incorporation, but had no effect on EGFR phosphorylation, suggesting that EGFR may be an upstream component of PI3-K/Akt and MAPK in these responses. This hypothesis was supported by the tranfection with dominant negative plasmids of p85 and Akt which significantly attenuated BK-induced Akt and p42/p44 MAPK phosphorylation. Pretreatment with U0126 (a MEK1/2 inhibitor) attenuated the p42/p44 MAPK phosphorylation and [3H]thymidine incorporation stimulated by BK, but had no effect on Akt activation. Moreover, BK-induced transactivation of EGFR and cell proliferation was blocked by matrix metalloproteinase inhibitor GM6001. These results suggest that, in VSMCs, the mechanism of BK-stimulated activation of p42/p44 MAPK and cell proliferation was mediated, at least in part, through activation of Src family kinases, EGFR transactivation, and PI3-K/Akt.  相似文献   

18.
Melanogenesis is one of the characteristic functional activities of melanocyte/melanoma and is regulated via mitogen-activated protein kinase (MAPK) and Akt/protein kinase B (PKB) pathways. Placental total lipid fraction (PTLF), prepared from a hydroalcoholic extract of fresh term human placenta contains sphingolipids and was recently shown to stimulate melanogenesis via up-regulation of the key enzyme tyrosinase in B16F10 mouse melanoma cells. How such lipids mediate their effects on pigmentation and tyrosinase expression is a particularly important aspect of melanogenesis. To study the signaling that leads to tyrosinase expression, we have investigated the roles of the MAPK and Akt/PKB pathways in B16F10 melanoma cells in melanogenesis in response to PTLF. Treatment of cells with PTLF led to the time dependent phosphorylation of p38 MAPK. SB203580, a p38 MAPK inhibitor, completely blocked the PTLF-induced melanogenesis by inhibiting promoter activity and subsequent expression of tyrosinase. Phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002 a blocker of the Akt signaling pathway, or an inhibitor of MEK (MAPK/ERK Kinase), PD98059 when included along with PTLF was found to potentiate PTLF-induced phosphorylation of p38 MAPK together with tyrosinase expression and melanogenesis. The results suggest that the activation of p38 MAPK plays a crucial role in PTLF-induced B16F10 melanogenesis by up-regulating tyrosinase expression.  相似文献   

19.
We previously reported that p38 mitogen-activated protein (MAP) kinase takes a part in arginine vasopressin (AVP)-induced heat shock protein 27 (HSP27) phosphorylation in aortic smooth muscle A10 cells. In the present study, we investigated whether phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) is involved in the phosphorylation of HSP27 in these cells. AVP time-dependently induced the phosphorylation of PI3K and Akt. Akt inhibitor, 1l-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, partially suppressed the phosphorylation of HSP27. The AVP-induced HSP27 phosphorylation was attenuated by LY294002, a PI3K inhibitor. The combination of Akt inhibitor and SB203580, a p38 MAP kinase inhibitor, completely suppressed the AVP-induced phosphorylation of HSP27. Furthermore, LY294002 or Akt inhibitor did not affect the AVP-induced phosphorylation of p38 MAP kinase and SB203580 did not affect the phosphorylation of PI3K or Akt. These results suggest that PI3K/Akt plays a part in the AVP-induced phosphorylation of HSP27, maybe independently of p38 MAP kinase, in aortic smooth muscle A10 cells.  相似文献   

20.
Although the significance of vascular endothelial growth factor (VEGF) and its receptors in angiogenesis is well established, the signal transduction cascades activated by VEGF and their involvement in mediating the mitogenic response of endothelial cells to VEGF are incompletely characterized. Here we demonstrate that VEGF activates mitogen-activated protein (MAP) kinases, including the extracellular signal-regulated protein kinase (ERK) and p38 MAP kinase, phosphatidylinositol 3-kinase (PI 3-kinase), and p70 S6 kinase in human umbilical vein endothelial cells (HUVEC). The activation of these enzymes was assayed by kinase phosphorylation and by kinase activity towards substrates. Studies with PI 3-kinase inhibitors revealed that activation of p70 S6 kinase was mediated by PI 3-kinase. Selective inhibition of ERK, PI 3-kinase, and p70 S6 kinase with the inhibitors PD098059, LY294002, and rapamycin, respectively, inhibited VEGF-stimulated HUVEC proliferation. In marked contrast, the p38 MAP kinase inhibitor SB203580 not only failed to inhibit but actually enhanced HUVEC proliferation; this effect was associated with the phosphorylation of Rb protein. Rb phosphorylation resulted from a decrease in the level of the cdk inhibitor p27KiP1. These results indicate that the activities of ERK, PI 3-kinase, and p70 S6 kinase are essential for VEGF-induced HUVEC proliferation. p38 MAP kinase suppresses endothelial cell proliferation by regulating cell-cycle progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号