首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Medaka (Oryzias latipes) eggs microinjected with the Ca(2+)-mobilising messenger cyclic adenosine diphosphate ribose (cADPR) underwent a wave of exocytosis of cortical alveoli and were thus activated. The number of eggs activated was sharply dependent on the concentration of cADPR in the pipette, the threshold concentration was approximately 60 nM. After injection, a pronounced latency preceded the onset of cortical alveoli exocytosis; this latency was independent of the concentration of cADPR but decreased markedly with increasing temperature. Heat-treated cADPR, which yields the inert non-cyclised product ADP-ribose, was ineffective in activating eggs. When cADPR was injected into aequorin-loaded eggs, a wave of luminescence arose at the site of cADPR injection and then swept out across the egg with a mean velocity of approximately 13 microns/s; the velocity was independent of the concentration of injected cADPR. In such a large cell (diameter of around 1 mm), this is considerably faster than that possible by simple diffusion of cADPR, which unambiguously demonstrates that cADPR must activate a regenerative process. cADPR has been demonstrated to modulate Ca(2+)-induced Ca2+ release (CICR) via ryanodine receptors (RyRs) in many cell types, and consistent with this was the finding that microinjection of the pharmacological RyR modulator, ryanodine, also activated medaka eggs. These results suggest that a cADPR-sensitive Ca2+ release mechanism is present in the medaka egg, that cADPR is the most potent activator of medaka eggs described to date, and that it activates eggs by triggering a wave of CICR from internal stores that in turn stimulates a wave of exocytosis.  相似文献   

2.
To investigate whether or not causal relationship exists between the increase in intracellular Ca2+ and other cortical reactions at fertilization in the medaka, Oryzias latipes , intracellular Ca2+ was determined from luminescence of aequorin previously microinjected into cortical cytoplasm in acetone-treated eggs, when they were inseminated or activated by microinjection of Ca2+. Neither an increase in cytoplasmic calcium nor exocytosis of cortical alveoli occurred in eggs treated with acetone, though other events of fertilization i.e. completion of meiosis, fusion of pronuclei, and accumulation of cortical cytoplasm with intact cortical alveoli in the animal pole region were observed in normal time sequence in these eggs. When denuded eggs were treated with acetone, contraction of the egg and slow resumption of meiosis (extrusion of polar body) were observed without insemination. When denuded eggs were inseminated immediately after acetone-treatment, the number of spermatozoa that penetrated into the egg was greater in the animal hemisphere than in the vegetal hemisphere. These results may indicate that acetone inactivates the egg plasma membrane or its adjacent cortical cytoplasm so that it cannot participate in a propagative increase in intracellular Ca2+ and exocytosis, while it also induces cytoplasmic activation leading to egg contraction, resumption of meiosis and formation of pronuclei. The present results suggest that sperm penetration, resumption of meiosis and ooplasmic segregation are regulated separately from the release of intracellular Ca2+ and exocytosis.  相似文献   

3.
A transient rise in the concentration of Ca2+ in the cortex upon fertilization was demonstrated in medaka eggs injected with aequorin. Detection of the aequorin luminescence with an ultra-high sensitivity photonic microscope system revealed a wave of increased Ca2+ concentration starting at the site of sperm entry (animal pole) and being propagated along the cortex of the egg toward the antipode. The wave traversed the entire egg surface within 2–3 min. The peak value of the aequorin luminescence, and therefore the peak value of the Ca2+ transient, was generally higher at the site of sperm entry than in other regions. The peak values of the luminescence (and therefore of the Ca2+ concentration in the cortex) remained fairly constant during propagation of the wave. Microinjection of Ca2+ into the cortex also induced a Ca2+ wave. When the egg was stimulated by microinjection of Ca2+ at the equatorial region, the Ca2+ wave was propagated at a fairly constant speed over the egg surface, except at the region near the vegetal pole where the wave was retarded. Simultaneous recording of the Ca2+ wave and the wave of cortical change (breakdown of cortical alveoli) in eggs during fertilization revealed that the Ca2+ wave preceded the wave of cortical change.
A Ca2+ wave was also demonstrated in sand dollar eggs, although due to their smaller size the phenomenon was not as clear as in medaka eggs.  相似文献   

4.
Sheep liver cytoplasmic aldehyde dehydrogenase is strongly inhibited by Mg2+, Ca2+ and Mn2+. The inhibition is only partial, however, with 8-15% of activity remaining at high concentrations of these agents. In 50 mM-Tris/Hcl, pH 7.5, the concentrations giving half-maximal effect were: Mg2+, 6.5 micrometers; Ca2+, 15.2 micrometers; Mn2+, 1.5 micrometer. The esterase activity of the enzyme is not affected by such low metal ion concentrations, but appears to be activated by high concentrations. Fluorescence-titration and stopped-flow experiments provide evidence for interaction of Mg2+ with NADH complexes of the enzyme. As no evidence for the presence of increased concentrations of functioning active centres was obtained in the presence of Mg2+, it is concluded that effects of Mg2+ (and presumably Ca2+ and Mn2+ also) are brought about by trapping increased concentrations of NADH in a Mg2+-containing complex. This complex must liberate products more slowly than any of the complexes involved in the non-inhibited mechanism.  相似文献   

5.
Surface changes induced by sea water were analyzed in the ovulated oocyte of the prawn Palaemon serratus. They depended on the presence of external Mg2+ but not on external Ca2+ alone. Increasing external Mg2+ from 0 mM to 30 mM stimulated first a progressive disappearance of preexisting microvilli, which was over within 30 min of incubation. This is correlated with membrane removal via internalization of coated vesicles, ascertained by observations of endocytosis of an extracellular fluid-phase marker and by measurement of a diminution in membrane capacitance (Cm). Thirty-five minutes after sea water contact, the prawn oocyte underwent a cortical reaction independent of fertilization. It consists in a heavy exocytosis of ring-shaped elements, leading to the deposition of a thick capsule, and requiring a threshold Mg2+ concentration of greater than or equal to 10 mM and at least a 3-min incubation with Mg2+. Concurrently, the values of the membrane capacitance (Cm) and conductance (Gm) increased about 2 and 10 times their initial values, respectively. The calcium ionophore ionomycin, added to Mg(2+)-free artificial sea water, stimulated the cortical reaction with requirement of external Ca2+. Other divalent cations (Mn2+, Zn2+, Co2+, Ni2+, Cd2+) instead of Mg2+, induced the cortical reaction, but Ba2+, Sr2+, and La3+ did not. When eggs are fertilized, the cortical reaction takes place in two steps, the first being a discrete exocytosis of a foamy material and the second always involving ring-shaped elements.  相似文献   

6.
The eggs of most or all animals are thought to be activated after fertilization by a transient increase in free cytosolic Ca2+ concentration ([Ca2+]i). We have applied Ca2+-selective microelectrodes to detect such an increase in fertilized eggs of the frog, Xenopus laevis. As observed with an electrode in the animal hemisphere, [Ca2+]i increased from 0.4 to 1.2 microM over the course of 2 min after fertilization, and returned to its original value during the next 10 min. No further changes in [Ca2+]i were detected through the first cleavage division. In eggs impaled with two Ca2+ electrodes, the Ca2+ pulse was observed to travel as a wave from the animal to the vegetal hemisphere, propagating at a rate of approximately 10 microns/s across the animal hemisphere. The apparent delay between the start of the fertilization potential and initiation of the Ca2+ wave at the sperm entry site as approximately 1 min. Through these observations describe only the behavior of subcortical [Ca2+]i, we suggest that our data represent the subcortical extension of the cortical Ca2+ wave thought to trigger cortical granule exocytosis, and we present evidence that both the timing and magnitude of the Ca2+ pulse we observed are consistent with this identity. This first quantification of subcortical [Ca2+]i during fertilization indicates that the Ca2+ transient is available to regulate processes (e.g., protein synthesis) in the subcortical cytosol.  相似文献   

7.
Ca2+ release from sarcoplasmic reticulum membranes, activated by alkaline pH occurs only when EGTA is present in the release medium. Addition of very low concentrations of Ca2+ to the medium inhibits Ca2+ release. The concentration of free Ca2+ required for 50% inhibition ranges from between 5 and 20 nM in different experiments and/or membrane preparations, irrespective of whether the free Ca2+ concentration is controlled by EGTA or CDTA. Other divalent cations such as Mn2+, Ba2+, Cu2+, Cd2+ and Mg2+ also exert an inhibitory effect on Ca2+ release, with higher or lower potency than that of Ca2+. The inactivation of Ca2+ release by Ca2+ is reversible. We suggest the involvement of high-affinity Ca2+-binding sites in the control of Ca2+ release.  相似文献   

8.
In contrast to most systems in which oocyte activation is triggered by the fertilizing sperm, Sicyonia ingentis oocytes are activated by seawater Mg2+ during spawning. S. ingentis oocytes were spawned into Mg(2+)-free seawater and microinjected with the fluorescent Ca2+ indicator Fluo-3 to study the effects of added Mg2+ on intracellular Ca2+ levels. The Mg2+ induced a wave of fluorescence across the oocyte that traveled at a speed of 13 +/- 3 microns/sec. Extracellular Ca2+ was not required for induction of the wave. Treatment with Ca2+ ionophore in Mg(2+)-free medium or a localized injection (0.3% oocyte volume) of 3-5 microM Ca2+ also initiated the wave; injection of 250 mM Mg2+ (up to 1.5% oocyte volume) had no effect. Microinjection of 750 microM EGTA (final) suppressed the Mg(2+)-induced wave, while an identical concentration of EDTA had no inhibitory effect. Subsequent to the initial Mg(2+)-induced intracellular Ca2+ increase, a second Ca2+ increase was observed at approximately 15 min postspawning; the timing of this second increase appeared to be independent of when the Mg(2+)-induced wave was initiated, thus an event associated with spawning may be involved. While oocytes in normal seawater were monospermic, those in Mg(2+)-free seawater were polyspermic, suggesting a role for the Mg(2+)-induced Ca2+ wave in regulating sperm entry into the oocyte.  相似文献   

9.
The effects of Mg2+ on rat liver microsomal Ca2+ sequestration   总被引:1,自引:0,他引:1  
The effects of Mg2+ on the hepatic microsomal Ca2(+)-sequestering system was tested. Ca2(+)-ATPase activity and Ca2+ uptake were both dependent on the concentration of free Mg2+, reaching maximum levels at 2 mM. The effects of Mg-ATP were also influenced by the concentration of free Mg2+, being maximally effective at a ratio of 1:1. The results suggest that Mg2+ influences Ca2+ sequestration at various steps, namely in addition to forming the substrate of the Ca2(+)-ATPase reaction, Mg-ATP, Mg2+ stimulates the reaction at an additional step, as indicated by its stimulatory effect on the Ca2(+)-ATPase reaction and on Ca2+ uptake, even at optimal Mg-ATP levels. The stimulatory effect of Mg2+ was evident at various pH levels tested, and it was nucleotide specific. The stimulatory effect of Mg2+ might be exerted at the dephosphorylation step of the enzymatic reaction or at an other, yet undefined, site. The results demonstrate a plural effect of Mg2+ on the hepatic microsomal sequestration system. This indicates that, depending on its magnitude, changes in Mg2+ distribution might influence cytosolic Ca2+ levels.  相似文献   

10.
The Ca2+ rise at fertilization of echinoderm eggs is initiated by a process requiring the sequential activation of a Src family kinase, phospholipase C gamma, and the inositol trisphosphate receptor/channel in the endoplasmic reticulum. The consequences of the Ca2+ rise include exocytosis of cortical granules, which establishes a block to polyspermy, and inactivation of MAP kinase, which functions in linking the Ca2+ rise to the reinitiation of the cell cycle.  相似文献   

11.
The effects of Ca2+ on ethanolaminephosphotransferase [EC 2.7.8.1] and cholinephosphotransferase [EC 2.7.8.2] activities in rabbit platelet membranes were studied using endogenous diglyceride and CDP-[3H]ethanolamine or CDP-[14C]choline as substrates. Both transferases required Mn2+, Co2+, or Mg2+ as a metal cofactor and the optimal concentrations of the metals for both activities were about 5, 10, and 5 mM, respectively. When 5 mM Mg2+ was used as a cofactor, both transferase activities were inhibited by a low concentration of Ca2+ (half maximal inhibition at approx. 15 microM). In the presence of 5 mM Mn2+, however, approx. 5 mM Ca2+ was required to produce half maximal inhibition. The Ca2+-induced inhibition was reversible and the rate of the inhibition was not affected either by the concentrations of the CDP-compound or by exogenously added diacylglycerol. The relationship between Ca2+ and both Mg2+ and Mn2+ on the transferase activities was competitive. 45Ca2+ binding (and/or uptake) to the platelet membranes was inhibited by Mn2+, Mg2+, and Co2+, in a concentration-dependent manner. However, the inhibitory effects of the three metal ions on the total Ca2+ binding (and/or uptake) did not correlate with the activation of both transferase activities by the three metal ions in the presence of Ca2+. These results suggest that both transferase activities are regulated by low concentrations of Ca2+ in the presence of optimal concentrations of Mg2+, and that the inhibition is mediated directly by Ca2+, which interacts with a specific metal cofactor binding site(s) of the transferases.  相似文献   

12.
The sulfhydryl reagent thimerosal enhanced the sensitivity of hamster eggs to injected inositol 1,4,5-trisphosphate (InsP3) or Ca2+ to generate regenerative Ca2+ release from intracellular pools. A monoclonal antibody (mAb) to the InsP3 receptor blocked both the InsP3-induced Ca2+ release (IICR) and Ca(2+)-induced Ca2+ release (CICR). The mAb also blocked Ca2+ oscillations induced by thimerosal. The results indicate that thimerosal enhances IICR sensitized by cytosolic Ca2+, but not CICR from InsP3-insensitive pools, and causes repetitive Ca2+ releases from InsP3-sensitive pools.  相似文献   

13.
We have used fluorescence ratio-imaging of fura-2 in the activating egg of Xenopus laevis to study the wave of increased intracellular free Ca2+ concentration ([Ca2+]i) while monitoring that of cortical granule exocytosis. Naturally matured eggs were dejellied, injected with fura-2, and activated by the iontophoresis of 1-30 nCoul of inositol-1,4,5-trisphosphate which triggers an immediate increase in free [Ca2+]i at the injection site. The Ca2+ rise spreads throughout the egg, reaching the opposite side in 5-8 min, and is followed by elevation of the fertilization envelope about 20-30 sec behind the [Ca2+]i wave. [Ca2+]i returns to preactivation levels within about 20 min after activation. We further studied the role of phosphatidylinositol-4,5-bisphosphate (PIP2) hydrolysis by microinjecting antibodies to PIP2 into the egg. PIP2 antibodies did not alter the propagation velocity of the wave but greatly reduced the amount of Ca2+ released in the egg cortex. These data suggest that PIP2 hydrolysis plays a role in the release of [Ca2+]i in the outer regions of the egg following activation.  相似文献   

14.
Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.  相似文献   

15.
Using a Ca2+-selective electrode and Quin 2 and chlortetracycline fluorescence, a Ca2+ release from terminal cysterns of skeletal muscle sarcoplasmic reticulum under effects of heparin, caffeine and Ca2+ has been studied. It was shown that Ca2+ release induced by heparin is insensitive to the blockers of Mg2+-dependent system of Ca2+-induced Ca2+ release, i.e., Mg2+, tetracaine and dimethylsulfoxide. Preliminary release of Ca2+ in the presence of caffeine, which activates Mg2+-dependent Ca2+ release, does not prevent the heparin-induced Ca2+ release. At the same time, after Ca2+ release caused by Ca2+ in a Mg2+-independent system, heparin cannot cause additional efflux of Ca2+. It has been shown that the heparin-induced release of Ca2+ diminishes with a decrease in a decrease in Ca2+ concentration. This effect is less pronounced in the presence of Na+ than with K+. The data obtained suggest that sarcoplasmic reticulum terminal cysterns contain two systems of Ca2+-induced release of Ca2+, i.e., a Mg2+-dependent, caffeine-sensitive and a Mg2+-independent heparin-sensitive ones. The mechanism of activation of both systems by caffeine and heparin consists, in all probability, in their increased affinity for Ca2+.  相似文献   

16.
Saltatory propagation of Ca2+ waves by Ca2+ sparks.   总被引:4,自引:0,他引:4       下载免费PDF全文
Punctate releases of Ca2+, called Ca2+ sparks, originate at the regular array of t-tubules in cardiac myocytes and skeletal muscle. During Ca2+ overload sparks serve as sites for the initiation and propagation of Ca2+ waves in myocytes. Computer simulations of spark-mediated waves are performed with model release sites that reproduce the adaptive Ca2+ release observed for the ryanodine receptor. The speed of these waves is proportional to the diffusion constant of Ca2+, D, rather than D, as is true for reaction-diffusion equations in a continuous excitable medium. A simplified "fire-diffuse-fire" model that mimics the properties of Ca2+-induced Ca2+ release (CICR) from isolated sites is used to explain this saltatory mode of wave propagation. Saltatory and continuous wave propagation can be differentiated by the temperature and Ca2+ buffer dependence of wave speed.  相似文献   

17.
Isolation of Ca2+, Mg2+-dependent nuclease from calf thymus chromatin   总被引:1,自引:0,他引:1  
Ca2+,Mg2+-dependent nuclease was isolated from calf thymus chromatin by stepwise chromatography on DEAE-Sepharose, CM-Sephadex and DNA-Sepharose. The enzyme was purified more than 700-fold. SDS-PAGE electrophoresis revealed one protein band possessing an enzymatic activity. The molecular mass of the nuclease as determined by gel filtration is 25700 Da, that determined by 12% SDS polyacrylamide gel electrophoresis is 28,000 Da. In the presence of various ions the enzyme activity decreases in the following order: (Ca2+ + Mn2+) greater than (Ca2+ + Mg2+) greater than Mn2+; the pH optimum is at 8.0. In media with Mg2+, Ca2+, Co2+ and Zn2+ the nuclease is inactive. Some other properties of the enzyme are described.  相似文献   

18.
Ca2+-release pathways from Ca2+-preloaded mitochondria of the yeast Endomyces magnusii were studied. In the presence of phosphate as a permeant anion, Ca2+ was released from respiring mitochondria only after massive cation loading at the onset of anaerobiosis. Intensive aeration of the mitochondrial suspension rapidly inhibited the efflux of Ca2+ and induced its reuptake. The Ca2+ release was not affected by cyclosporin A, an inhibitor of the nonselective permeability transition of mammalian mitochondria. With acetate as the permeant anion, a spontaneous net Ca2+ efflux began after uptake of about 75% of the added cation. The rate of this efflux was insensitive to cyclosporin A, aeration, and Na+ and was proportional to the Ca2+ load. The Ca2+ release was inhibited by La3+, Mn2+, Mg2+, TPP+, and nigericin (in the presence of KCl) and activated by spermine and hypotonicity. We conclude that Ca2+ efflux from preloaded E. magnusii mitochondria is very similar to the Na+-independent specific pathway for Ca2+ release operative in mitochondria from nonexcitable mammalian tissues.  相似文献   

19.
Embryonic cells transiently express an embryonic muscarinic system during morphogenesis. Stimulation of the embryonic muscarinic receptor results in biphasic intracellular Ca2+ mobilization: an initial "peak" due to Ca2+ release from intracellular stores is followed by a sustained "plateau" of enhanced cytoplasmic Ca2+ due to influx of extracellular Ca2+. In the present investigation, we characterized the Ca2+ influx by measuring the cytoplasmic free Ca2+ concentration [Ca2+]i using the Ca2+ indicator fura-2: 1. The increase of [Ca2+]i during the plateau depended linearly on the logarithm of the extracellular calcium concentration whereas the initial peak was almost independent from extracellular calcium. 2. The organic Ca2+ entry blockers verapamil, gallopamil, nifedipine, nitrendipine and the inorganic blockers Mn2+, Mg2+ and La3+ were without effect on both phases of Ca2+ mobilization. Only Ni2+ at concentrations above 1 mM was able to reduce the influx without affecting the intracellular Ca2+ release. 3. Substitution of extracellular Na+ by guanidine+, choline+ or tris+ and membrane depolarisation by increasing the extracellular K+ concentration had no effect on either phase of Ca2+ mobilization. We conclude that a non-voltage dependent, receptor-operated influx mechanism, probably a "second messenger operated Ca2+ channel", is responsible for the Ca2+ influx after stimulation of the embryonic muscarinic receptor.  相似文献   

20.
A radioisotope flux-rapid-quench-Millipore filtration method is described for determining the effects of Ca2+, adenine nucleotides, and Mg2+ on the Ca2+ release behaviour of "heavy" sarcoplasmic reticulum (SR) vesicles. Rapid 45Ca2+ efflux from passively loaded vesicles was blocked by the addition of Mg2+ and ruthenium red. At pH 7 and 10(-9) M Ca2+, vesicles released 45Ca2+ with a low rate (k = 0.1 s-1). An increase in external Ca2+ concentration to 4 microM or the addition of 5 mM ATP or the ATP analogue adenosine 5'-(beta,gamma-methylenetriphosphate) (AMP-PCP) resulted in intermediate 45Ca2+ release rates. The maximal release rate was observed in media containing 4 microM Ca2+ and 5 mM AMP-PCP and had a first-order rate constant of 30-100 s-1. Mg2+ partially inhibited Ca2+- and nucleotide-induced 45Ca2+ efflux. In the absence of AMP-PCP, 45Ca2+ release was fully inhibited at 5 mM Mg2+ or 5 mM Ca2+. The composition of the release media was systematically varied, and the flux data were expressed in the form of Hill equations. The apparent n values of activation of Ca2+ release by ATP and AMP-PCP were 1.6-1.9. The Hill coefficient of Ca2+ activation (n = 0.8-2.1) was dependent on nucleotide and Mg2+ concentrations, whereas the one of Mg2+ inhibition (n = 1.1-1.6) varied with external Ca2+ concentration. These results suggest that heavy SR vesicles contain a "Ca2+ release channel" which is capable of conducting Ca2+ at rates comparable with those found in intact muscle. Ca2+, AMP-PCP (ATP), and Mg2+ appear to act at noninteracting or interacting sites of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号