首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Objectives

We aimed to 1) determine if subcortical volume deficits are common to mesial temporal lobe epilepsy (MTLE) patients and their unaffected siblings 2) assess the suitability of subcortical volumetric traits as endophenotypes for MTLE.

Methods

MRI-based volume measurements of the hippocampus, amygdala, thalamus, caudate, putamen and pallidium were generated using an automated brain reconstruction method (FreeSurfer) for 101 unrelated ‘sporadic’ MTLE patients [70 with hippocampal sclerosis (MTLE+HS), 31 with MRI-negative TLE], 83 unaffected full siblings of patients and 86 healthy control subjects. Changes in the volume of subcortical structures in patients and their unaffected siblings were determined by comparison with healthy controls. Narrow sense heritability was estimated ipsilateral and contralateral to the side of seizure activity.

Results

MTLE+HS patients displayed significant volume deficits across the hippocampus, amygdala and thalamus ipsilaterally. In addition, volume loss was detected in the putamen bilaterally. These volume deficits were not present in the unaffected siblings of MTLE+HS patients. Ipsilaterally, the heritability estimates were dramatically reduced for the volume of the hippocampus, thalamus and putamen but remained in the expected range for the amygdala. MRI-negative TLE patients and their unaffected siblings showed no significant volume changes across the same structures and heritability estimates were comparable with calculations from a healthy population.

Conclusions

The findings indicate that volume deficits for many subcortical structures in ‘sporadic’ MTLE+HS are not heritable and likely related to acquired factors. Therefore, they do not represent suitable endophenotypes for MTLE+HS. The findings also support the view that, at a neuroanatomical level, MTLE+HS and MRI-negative TLE represent two distinct forms of MTLE.  相似文献   

2.
Hypersynchronous (HYP) and low voltage fast (LVF) activity are two separate ictal depth EEG onsets patterns often recorded in presurgical patients with MTLE. Evidence suggests the mechanisms generating HYP and LVF onset seizures are distinct, including differential involvement of hippocampal and extra-hippocampal sites. Yet the extent of extra-hippocampal structural alterations, which could support these two common seizures, is not known. In the current study, preoperative MRI from 24 patients with HYP or LVF onset seizures were analyzed to determine changes in cortical thickness and relate structural changes to spatiotemporal properties of the ictal EEG. Overall, onset and initial ipsilateral spread of HYP onset seizures involved mesial temporal structures, whereas LVF onset seizures involved mesial and lateral temporal as well as orbitofrontal cortex. MRI analysis found reduced cortical thickness correlated with longer duration of epilepsy. However, in patients with HYP onsets, the most affected areas were on the medial surface of each hemisphere, including parahippocampal regions and cingulate gyrus, whereas in patients with LVF onsets, the lateral surface of the anterior temporal lobe and orbitofrontal cortex showed the greatest effect. Most patients with HYP onset seizures were seizure-free after resective surgery, while a higher proportion of patients with LVF onset seizures had only worthwhile improvement. Our findings confirm the view that recurrent seizures cause progressive changes in cortical thickness, and provide information concerning the structural basis of two different epileptogenic networks responsible for MTLE. One, identified by HYP ictal onsets, chiefly involves hippocampus and is associated with excellent outcome after standardized anteromedial temporal resection, while the other also involves lateral temporal and orbitofrontal cortex and a seizure-free surgical outcome occurs less after this procedure. These results suggest that a more extensive tailored resection may be required for patients with the second type of MTLE.  相似文献   

3.
4.

Background

The functional architecture of the human brain has been extensively described in terms of functional connectivity networks, detected from the low–frequency coherent neuronal fluctuations that can be observed in a resting state condition. Little is known, so far, about the changes in functional connectivity and in the topological properties of functional networks, associated with different brain diseases.

Methodology/Principal Findings

In this study, we investigated alterations related to mesial temporal lobe epilepsy (mTLE), using resting state functional magnetic resonance imaging on 18 mTLE patients and 27 healthy controls. Functional connectivity among 90 cortical and subcortical regions was measured by temporal correlation. The related values were analyzed to construct a set of undirected graphs. Compared to controls, mTLE patients showed significantly increased connectivity within the medial temporal lobes, but also significantly decreased connectivity within the frontal and parietal lobes, and between frontal and parietal lobes. Our findings demonstrated that a large number of areas in the default-mode network of mTLE patients showed a significantly decreased number of connections to other regions. Furthermore, we observed altered small-world properties in patients, along with smaller degree of connectivity, increased n-to-1 connectivity, smaller absolute clustering coefficients and shorter absolute path length.

Conclusions/Significance

We suggest that the mTLE alterations observed in functional connectivity and topological properties may be used to define tentative disease markers.  相似文献   

5.
The electrophysiological signature of resting state oscillatory functional connectivity within the default mode network (DMN) during spike-free periods in temporal lobe epilepsy (TLE) remains unclear. Using magnetoencephalographic (MEG) recordings, this study investigated how the connectivity within the DMN was altered in TLE, and we examined the effect of lateralized TLE on functional connectivity. Sixteen medically intractable TLE patients and 22 controls participated in this study. Whole-scalp 306-channel MEG epochs without interictal spikes generated from both MEG and EEG data were analyzed using a minimum norm estimate (MNE) and source-based imaginary coherence analysis. With this processing, we obtained the cortical activation and functional connectivity within the DMN. The functional connectivity was increased between DMN and the right medial temporal (MT) region at the delta band and between DMN and the bilateral anterior cingulate cortex (ACC) regions at the theta band. The functional change was associated with the lateralization of TLE. The right TLE showed enhanced DMN connectivity with the right MT while the left TLE demonstrated increased DMN connectivity with the bilateral MT. There was no lateralization effect of TLE upon the DMN connectivity with ACC. These findings suggest that the resting-state functional connectivity within the DMN is reinforced in temporal lobe epilepsy during spike-free periods. Future studies are needed to examine if the altered functional connectivity can be used as a biomarker for treatment responses, cognitive dysfunction and prognosis in patients with TLE.  相似文献   

6.
In a recent paper, we showed that the value of a nonlinear quantity computed from scalp electrode data was correlated with the time to a seizure in patients with temporal lobe epilepsy. In this paper we study the relationship between the linear and nonlinear content and analyses of the scalp data. We do this in two ways. First, using surrogate data methods, we show that there is important nonlinear structure in the scalp electrode data to which our methods are sensitive. Second, we study the behavior of some simple linear metrics on the same set of scalp data to see whether the nonlinear metrics contain additional information not carried by the linear measures. We find that, while the nonlinear measures are correlated with time to seizure, the linear measures are not, over the time scales we have defined. The linear and nonlinear measures are themselves apparently linearly correlated, but that correlation can be ascribed to the influence of a small set of outliers, associated with muscle artifact. A remaining, more subtle relation between the variance of the values of a nonlinear measure and the expectation value of a linear measure persists. Implications of our observations are discussed.  相似文献   

7.
Wang  Jin-Gang  Cai  Qing  Zheng  Jun  Dong  Yu-Shu  Li  Jin-Jiang  Li  Jing-Chen  Hao  Guang-Zhi  Wang  Chao  Wang  Ju-Lei 《Neurochemical research》2016,41(7):1751-1760
Neurochemical Research - Recent studies have shown that histone acetylation is involved with the regulation of enzyme glutamate decarboxylases (GADs), including GAD67 and GAD65. Here, we...  相似文献   

8.
9.
10.
11.
12.
13.

Background

To compare the radiation-induced temporal lobe injury (TLI) in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT) or two-dimensional conventional radiotherapy (2D-CRT).

Patients and Methods

1276 cases of NPC treated with IMRT or 2D-CRT were retrospectively reviewed. A diagnosis of TLI was made on follow-up magnetic resonance imaging (MRI).

Results

The crude incidence of TLI was 7.5% and 10.8% (P = 0.048), and the actuarial 5-year incidence was 16% and 34.9% (P<0.001) for the IMRT and 2D-CRT groups, respectively. Multivariate analysis revealed both T stage (P<0.001) and radiation technique (P<0.001) as independent predictors. Patients with T1, T2 and T3 disease had a significantly higher risk when treated with 2D-CRT (P = 0.005, 0.016, <0.001, respectively). This trend was not evident for T4 patients (P = 0.680). The 2D-CRT group had a longer latency for the development of TLI (P<0.001). Those with T4 disease had a shorter median time to TLI (P = 0.006, 0.042, <0.001 when compared with T1, T2 and T3, respectively).

Conclusions

IMRT is superior to 2DRT for the management of T1-T3 NPC in terms of sparing the temporal lobe. The high incidence of TLI in T4 disease needs to be addressed.  相似文献   

14.
Purinergic P2X3 receptors (P2X3Rs) play extensive roles in nerve cells in the central nervous system, particularly in hyperexcitability and calcium (Ca2+) influx. However, the role of P2X3Rs in epilepsy has not been previously investigated. To determine the relationship between P2X3Rs and epilepsy, the expression and cellular location of P2X3Rs in patients with intractable temporal lobe epilepsy (TLE) and in a lithium chloride-pilocarpine-induced chronic rat model of epilepsy were assessed. Furthermore, the function of P2X3Rs was assessed in vitro. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were used to evaluate the expression levels of P2X3Rs in brain tissues from TLE patients and an epileptic rat model, whereas immunofluorescence labeling was applied to determine the distribution of target proteins. Whole-cell recording was subsequently performed to identify the influence of P2X3Rs on seizure-like discharges. P2X3Rs were located at the cell bodies and dendrites of neurons with significantly increased expression in the TLE patients and epileptic rat model. In vitro, P2X3R activation accelerated sustained repetitive firing, whereas P2X3R inhibition led to relatively low-frequency discharges. To the best of our knowledge, this is the first study provide evidence that upregulated P2X3R expression exists in both epileptic humans and rats and may aggravate the epileptic state in vitro. Thus, P2X3Rs may represent a novel therapeutic target for antiepileptic drugs.  相似文献   

15.
It is well recognized that the reference gene in a RT-qPCR should be properly validated to ensure that gene expression is unaffected by the experimental condition. We investigated eight potential reference genes in two different pilocarpine PILO-models of mesial temporal lobe epilepsy (MTLE) performing a stability expression analysis using geNorm, NormFinder and BestKepeer softwares. Then, as a validation strategy, we conducted a relative expression analysis of the Gfap gene. Our results indicate that in the systemic PILO-model Actb, Gapdh, Rplp1, Tubb2a and Polr1a mRNAs were highly stable in hippocampus of rats from all experimental and control groups, whereas Gusb revealed to be the most variable one. In fact, we observed that using Gusb for normalization, the relative mRNA levels of the Gfap gene differed from those obtained with stable genes. On the contrary, in the intrahippocampal PILO-model, all softwares included Gusb as a stable gene, whereas B2m was indicated as the worst candidate gene. The results obtained for the other reference genes were comparable to those observed for the systemic Pilo-model. The validation of these data by the analysis of the relative expression of Gfap showed that the upregulation of the Gfap gene in the hippocampus of rats sacrificed 24 hours after status epilepticus (SE) was undetected only when B2m was used as the normalizer. These findings emphasize that a gene that is stable in one pathology model may not be stable in a different experimental condition related to the same pathology and therefore, the choice of reference genes depends on study design.  相似文献   

16.
17.
The inflammatory response mediated by microglia in the central nervous system is closely related to epilepsy. Notch signaling plays an important role in the microglial activation during hypoxia. This study aimed to investigate whether Notch signaling is involved in microglial activation and subsequent inflammation-related neuronal injury during the process of epileptogenesis in a rat model of temporal lobe epilepsy. By using western blotting, real-time quantitative PCR, immunohistochemistry and immunofluorescence labeling, we found that the expression of Notch signaling increased after status epilepticus and that a γ-secretase inhibitor could significantly inhibit the upregulation of Notch signaling, the activation of microglia, and the release of proinflammatory cytokines. Likewise, the neuronal apoptosis and loss in the hippocampus after SE were attenuated by the γ-secretase inhibitor. These results suggest that Notch signaling plays a key role in neuroinflammation and inflammation-related neuronal damage in epilepsy, and γ-secretase inhibitors may become a novel prospective therapeutic agent for epilepsy.  相似文献   

18.

Background

Where neurocysticercosis (NCC) is endemic, chronic calcified neurocysticercosis (cNCC) can be observed in patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis (MTLE-HS). Considering that both disorders cause recurrent seizures or cognitive impairment, we evaluated if temporal lobectomy is cognitively safe and effective for seizure control in MTLE-HS plus cNCC.

Methods

Retrospective cohort study of neuropsychological profile and surgical outcome of 324 MTLE-HS patients submitted to temporal lobectomy, comparing the results according to the presence or absence of cNCC.

Findings

cNCC occurred in 126 (38.9%) of our MTLE-HS patients, a frequency higher than expected, more frequently in women than in men (O.R. = 1.66; 95% C.I. = 1.05–2.61; p = 0.03). Left-side (but not right side) surgery caused impairment in selected neuropsychological tests, but this impairment was not accentuated by the presence of cNCC. Ninety-four (74.6%) patients with MTLE-HS plus cNCC and 153 patients (77.3%) with MTLE-HS alone were Engel class I after surgery (O.R. = 1.16; 95% C.I. = 0.69–1.95; p = 0.58). However, the chances of Engel class IA were significantly lower in MTLE-HS plus cNCC than in patients with MTLE-HS alone (31.7% versus 48.5%; O.R. = 2.02; 95% C.I. = 1.27–3.23; p = 0.003). Patients with MTLE-HS plus cNCC showed higher rates of Engel class ID (15.1% versus 6.6%; O.R. = 2.50; 95% C.I. = 1.20–5.32; p = 0.012).

Interpretation

cNCC can be highly prevalent among MTLE-HS patients living in areas where neurocysticercosis is endemic, suggesting a cause-effect relationship between the two diseases. cNCC does not add further risk for cognitive decline after surgery in MTLE-HS patients. The rates of Engel class I outcome were very similar for the two groups; however, MTLE-HS plus cNCC patients achieved Engel IA status less frequently, and Engel ID status more frequently. Temporal lobectomy can be safely performed in most patients with MTLE-HS plus cNCC without affecting cognitive outcome. Long-term surgical seizure control in MTLE-HS plus cNCC is still satisfactory, as long as selected patients remain under medication.  相似文献   

19.
The insula plays an important role both in emotion processing and in the generation of epileptic seizures. In the current study we examined thickness of insular cortices and bilateral skin conductance responses (SCR) in healthy subjects in addition to a small number of patients with temporal lobe epilepsy. SCR measures arousal and is used to assess non-conscious responses to emotional stimuli. We used two emotion tasks, one explicitly about emotion and the other implicit. The explicit task required judgments about emotions being expressed in photographs of faces, while the implicit one required judgments about the age of the people in the photographs. Patients and healthy differed in labeling neutral faces, but not other emotions. They also differed in their SCR to emotions, though the profile depended on which hand the recordings were from. Finally, we found relationships between the thickness of the insula and SCR to each task: in the healthy group the thickness of the left insula was related to SCR to the emotion-labeling task; in the patient group it was between the thickness of the right insula and SCR in the age-labeling task. These patterns were evident only for the right hand recordings, thus underscoring the importance of bilateral recordings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号