首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) is an adaptor protein that is essential for T cell development and T cell receptor (TCR) signaling activation. Previous studies have identified an important negative feedback regulation of SLP-76 by HPK1 (hematopoietic progenitor kinase 1; MAP4K1)-induced Ser-376 phosphorylation. Ser-376 phosphorylation of SLP-76 mediates 14-3-3 binding, resulting in the attenuation of SLP-76 activation and downstream signaling; however, the underlying mechanism of this action remains unknown. Here, we report that phosphorylated SLP-76 is ubiquitinated and targeted for proteasomal degradation during TCR signaling. SLP-76 ubiquitination is mediated by Ser-376 phosphorylation. Furthermore, Lys-30 is identified as a ubiquitination site of SLP-76. Loss of Lys-30 ubiquitination of SLP-76 results in enhanced anti-CD3 antibody-induced ERK and JNK activation. These results reveal a novel regulation mechanism of SLP-76 by ubiquitination and proteasomal degradation of activated SLP-76, which is mediated by Ser-376 phosphorylation, leading to down-regulation of TCR signaling.  相似文献   

2.
Previously, we identified p85, a subunit of PI3K, as one of the molecules that interacts with the N-terminal region of Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76). We also demonstrated that tyrosine phosphorylation either at the 113 and/or 128 position is sufficient for the association of SLP-76 with the Src homology 2 domain near the N terminus of p85. The present study further examines the role of the association of these two molecules on the activation of PI3K signaling cascade. Experiments were done to determine the role of SLP-76, either wild-type, tyrosine mutants, or membrane-targeted forms of various SLP-76 constructs, on the membrane localization and phosphorylation of Akt, which is an event downstream of PI3K activation. Reconstitution studies with these various SLP-76 constructs in a Jurkat variant cell line that lacks SLP-76 or linker for activation of T cells (LAT) show that the activation of PI3K pathway following TCR ligation requires both SLP-76 and LAT adaptor proteins. The results suggest that SLP-76 associates with p85 after T cell activation and that LAT recruits this complex to the membrane, leading to Akt activation.  相似文献   

3.
Nonreceptor protein tyrosine kinases and associated substrates play a pivotal role in Ag receptor stimulation of resting cells and in the initiation of activation-induced cell death (AICD) of preactivated T cells. CD4-associated p56lck has been implicated not only in the activation of primary T cells, but also in the inhibition of T cell responses. We have previously shown that CD4+ T cell clones can be rescued from AICD when surface CD4 is engaged before the TCR stimulus. In this study, we show that prevention of AICD is associated with a CD4-dependent inhibition of TCR-triggered tyrosine phosphorylation of the Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76) and Vav. We provide evidence for a SLP-76 interaction with Src homology 3 domains of p56lck and identify amino acids 185-194 of SLP-76 as relevant docking site. In view of the multiple functions of p56lck and SLP-76/Vav in the initiation of TCR/CD3/CD4 signaling, we propose a model for the CD4-dependent inhibition of TCR signaling and AICD of preactivated T cells. Our data suggest that preformed activation complexes of adapter proteins and enzymes in the vicinity of the CD4/p56lck complex are no longer available for the TCR signal when CD4 receptors are engaged before TCR stimulation.  相似文献   

4.
T cell antigen receptor (TCR) engagement results in protein-tyrosine kinase activation which initiates signaling cascades leading to induction of the interleukin-2 gene. Previous studies identified two substrates of the TCR-induced protein-tyrosine kinases, SH2 domain-containing leukocyte specific protein of 76 kDa (SLP-76) and SLP-76-associated phosphoprotein of 130 kDa (SLAP-130). While SLP-76 appears to couple the TCR with downstream signals, SLAP-130 may play a negative regulatory role in T cell activation. In this study, we demonstrate that consistent with its ability to abrogate the SLP-76 augmentation of TCR-induced activation of the NFAT/AP1 region of the interleukin-2 promoter, overexpression of SLAP-130 also interferes with the rescue of signaling in SLP-76-deficient Jurkat cells in co-transfection experiments. The effect of SLAP-130 on SLP-76 function is specific for regulating TCR-induced ERK activation, but not phospholipase Cgamma 1 phosphorylation. By generating both deletion and point mutants of SLAP-130, we identified tyrosine 559 as critical for the interaction between SLP-76 and SLAP-130. We show that mutation of this residue in context of full-length SLAP-130 diminishes the ability of SLAP-130 to abrogate SLP-76 function. These data suggest that the SLAP-130/SLP-76 association is important for the negative regulatory role that SLAP-130 appears to play in T cell signaling.  相似文献   

5.
6.
B cell linker protein (BLNK) is a SLP-76-related adaptor protein essential for signal transduction from the BCR. To identify components of BLNK-associated signaling pathways, we performed a phosphorylation-dependent yeast two-hybrid analysis using BLNK probes. Here we report that the serine/threonine kinase hematopoietic progenitor kinase 1 (HPK1), which is activated upon antigen-receptor stimulation and which has been implicated in the regulation of MAP kinase pathways, interacts physically and functionally with BLNK in B cells and with SLP-76 in T cells. This interaction requires Tyr(379) of HPK1 and the Src homology 2 (SH2) domain of BLNK/SLP-76. Via homology modeling, we defined a consensus binding site within ligands for SLP family SH2 domains. We further demonstrate that the SH2 domain of SLP-76 participates in the regulation of AP-1 and NFAT activation in response to T cell receptor (TCR) stimulation and that HPK1 inhibits AP-1 activation in a manner partially dependent on its interaction with SLP-76. Our data are consistent with a model in which full activation of HPK1 requires its own phosphorylation on tyrosine and subsequent interaction with adaptors of the SLP family, providing a mechanistic basis for the integration of this kinase into antigen receptor signaling cascades.  相似文献   

7.
The adaptor protein SLP-76 is expressed in multiple hematopoietic lineages including T cells, platelets, and neutrophils. SLP-76 mediated signaling is dependent on its multiple protein interaction domains, as it creates a scaffold on which key signaling complexes are built. SLP-76 is critical for supporting signaling downstream of both immunoreceptors and integrins. The signaling molecules used both upstream and downstream of SLP-76 are similar among these receptors and across cell types; however, important differences exist. Appreciating how SLP-76 coordinates signal transduction across different cell and receptor types provides insights into the complex interplay of pathways critical for activation of cells of the immune system that are essential for host defense.Adaptor proteins are an important component of many signaling systems both within and beyond the immune system. Unlike enzymes that catalyze the chemical reactions required for signal propagation, adaptor proteins are molecular platforms on which other proteins assemble. Although lacking enzymatic function, adaptor proteins regulate signaling by stabilizing or restricting molecular interactions required for proper enzyme activation and for localizing these key effector molecules appropriately within the cell.Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76) is an adaptor present in a number of hematopoietic cell lineages including T cells, platelets, neutrophils, mast cells, macrophages, and NK cells. There are two SLP-76 homologs: SLP-65/B cell linker protein (BLNK), and cytokine-dependent hematopoietic cell linker (CLNK), also known as mast cell immunoreceptor signal transducer (MIST). BLNK is expressed in B cells and monocytes, and CLNK is expressed in mast cells, activated T cells, and NK cells. SLP-76 was first identified in T cells as a substrate of T-cell receptor (TCR) stimulated protein tyrosine kinases (PTKs) through “pull down” experiments using immobilized growth factor receptor-bound protein 2 (Grb2) (Jackman et al. 1995). Since then, SLP-76 has been shown to be critically important in the development of T cells and for propagating signals downstream of not only the TCR but also additional receptors present on hematopoietic cells.  相似文献   

8.
A critical event in T cell receptor (TCR)-mediated signaling is the recruitment of hematopoietic-specific adaptor proteins that collect and transmit signals downstream of the TCR. Gads, a member of the Grb2 family of SH2 and SH3 domain-containing adaptors, mediates the formation of a complex between LAT and SLP-76 that is essential for signal propagation from the TCR. Here we examine the binding specificity of the Gads and Grb2 SH3 domains using peptide arrays and find that a nonproline-based R-X-X-K motif found in SLP-76 binds to the Gads carboxy-terminal SH3 domain with high affinity (K(D) = 240 +/- 45 nM). The Grb2 C-terminal SH3 domain also binds this motif, but with a 40-fold lower affinity than Gads. Single point mutations in either the relevant R (237) or K (240) completely abrogated SLP-76 association with Gads in vivo and impaired SLP-76 function. A chimeric Grb2 protein, possessing the C-terminal SH3 domain of Gads, was able to partially substitute for Gads in signaling downstream of the T cell receptor. These results provide a molecular explanation for the specific role of Gads in T cell receptor signaling, and identify a discrete subclass of SH3 domains whose binding is dependent on a core R-X-X-K motif.  相似文献   

9.
We present in this study novel findings on TCR-mediated signaling in naive, effector, and memory CD4 T cells that identify critical biochemical markers to distinguish these subsets. We demonstrate that relative to naive CD4 T cells, memory CD4 T cells exhibit a profound decrease in expression of the linker/adapter molecule SLP-76, while effector T cells express normal to elevated levels of SLP-76. The reduced level of SLP-76 is memory CD4 T cells is coincident with reduced phosphorylation overall, yet the residual SLP-76 couples to a subset of TCR-associated linker molecules, leading to downstream mitogen-activated protein (MAP) kinase activation. By contrast, effector CD4 T cells strongly phosphorylate SLP-76, linker for activation of T cells, and additional Grb2-coupled proteins, exhibit increased associations of SLP-76 to phosphorylated linkers, and hyperphosphorylate downstream Erk1/2 MAP kinases. Our results suggest distinct coupling of signaling intermediates to the TCR in naive, effector, and memory CD4 T cells. Whereas effector CD4 T cells amplify existing TCR signaling events accounting for rapid effector responses, memory T cells engage fewer signaling intermediates to efficiently link TCR triggering directly to downstream MAP kinase activation.  相似文献   

10.
The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a central role in T cell activation and T cell development. SLP-76 has three functional modules: an acidic domain with three key tyrosines, a central proline-rich domain, and a C-terminal Src homology 2 domain. Of these, mutation of the three N-terminal tyrosines (Y112, Y128, and Y145) results in the most profound effects on T cell development and function. Y112 and Y128 associate with Vav and Nck, two proteins shown to be important for TCR-induced phosphorylation of proximal signaling substrates, Ca(2+) flux, and actin reorganization. Y145 has been shown to be important for optimal association of SLP-76 with inducible tyrosine kinase, a key regulator of T cell function. To investigate further the role of the phosphorylatable tyrosines of SLP-76 in TCR signaling, cell lines and primary T cells expressing SLP-76 with mutations in individual or paired tyrosine residues were analyzed. These studies show that Tyr(145) of SLP-76 is the most critical tyrosine for both T cell function in vitro and T cell development in vivo.  相似文献   

11.
This study addresses the interactions between the adaptor protein Shb and components involved in T cell signalling, including SLP-76, Gads, Vav and ZAP70. We show that both SLP-76 and ZAP70 co-immunoprecipitate with Shb in Jurkat T cells and that Shb and Vav co-immunoprecipitate when cotransfected in COS cells. We also demonstrate, utilizing fusion protein constructs, that SLP-76, Gads and Vav associate independently of each other to different domains or regions, of Shb. Overexpression of an SH2 domain-defective Shb causes diminished phosphorylation of SLP-76 and Vav and consequently decreased activation of c-Jun kinase upon T cell receptor (TCR) stimulation. Shb was also found to localize to glycolipid-enriched membrane microdomains (GEMs), also called lipid rafts, after TCR stimulation. Our results indicate that upon TCR stimulation, Shb is targeted to these lipid rafts where Shb aids in recruiting the SLP-76-Gads-Vav complex to the T cell receptor zeta-chain and ZAP70.  相似文献   

12.
The adapter SLP-76 plays an essential role in Fc epsilon RI signaling, since SLP-76(-/-) bone marrow-derived mast cells (BMMC) fail to degranulate and release interleukin-6 (IL-6) following Fc epsilon RI ligation. To define the role of SLP-76 domains and motifs in Fc epsilon RI signaling, SLP-76(-/-) BMMC were retrovirally transduced with SLP-76 and SLP-76 mutants. The SLP-76 N-terminal and Gads binding domains, but not the SH2 domain, were critical for Fc epsilon RI-mediated degranulation and IL-6 secretion, whereas all three domains are essential for T-cell proliferation following T-cell receptor (TCR) ligation. Unexpectedly, the three tyrosine residues in SLP-76 critical for TCR signaling, Y112, Y128, and Y145, were not essential for IL-6 secretion, but were required for degranulation and mitogen-activated protein kinase activation. Furthermore, a Y112/128F SLP-76 mutant, but not a Y145F mutant, strongly reconstituted mast cell degranulation, suggesting a critical role for Y145 in Fc epsilon RI-mediated exocytosis. These results point to important differences in the function of SLP-76 between T cells and mast cells.  相似文献   

13.
14.
SLP-76 (Src homology (SH) 2-domain-containing leukocyte protein of 76 kDa) and FYB/SLAP (FYN-T-binding protein/SLP-76-associated protein) are two hemopoietic cell-specific adaptor proteins downstream of TCR-activated protein tyrosine kinases. SLP-76 has been implicated as an essential component in T cell signaling. FYB is selectively phosphorylated by FYN-T, providing a template for the recruitment of FYN-T and SLP-76 SH2 domains. Coexpression of FYN-T, FYB, and SLP-76 can synergistically up-regulate IL-2 production in T cells upon TCR ligation. In this report, we show that two tyrosines, Tyr595 and Tyr651, of FYB are major sites of phosphorylation by FYN-T and mediate binding to SLP-76 in Jurkat T cells. Furthermore, the synergistic up-regulation of IL-2 promoter activity in the FYN-T-FYB-SLP-76 pathway is contingent upon the interaction between FYB and SLP-76, but not the interaction between FYB and FYN-T. These observations define a pathway by which SLP-76 interacts with downstream components in the up-regulation of T cell cytokine production.  相似文献   

15.
Signal initiation by engagement of the TCR triggers actin rearrangements, receptor clustering, and dynamic organization of signaling complexes to elicit and sustain downstream signaling. Nef, a pathogenicity factor of HIV, disrupts early TCR signaling in target T cells. To define the mechanism underlying this Nef-mediated signal disruption, we employed quantitative single-cell microscopy following surface-mediated TCR stimulation that allows for dynamic visualization of distinct signaling complexes as microclusters (MCs). Despite marked inhibition of actin remodeling and cell spreading, the induction of MCs containing TCR-CD3 or ZAP70 was not affected significantly by Nef. However, Nef potently inhibited the subsequent formation of MCs positive for the signaling adaptor Src homology-2 domain-containing leukocyte protein of 76 kDa (SLP-76) to reduce MC density in Nef-expressing and HIV-1-infected T cells. Further analyses suggested that Nef prevents formation of SLP-76 MCs at the level of the upstream adaptor protein, linker of activated T cells (LAT), that couples ZAP70 to SLP-76. Nef did not disrupt pre-existing MCs positive for LAT. However, the presence of the viral protein prevented de novo recruitment of active LAT into MCs due to retargeting of LAT to an intracellular compartment. These modulations in MC formation and composition depended on Nef's ability to simultaneously disrupt both actin remodeling and subcellular localization of TCR-proximal machinery. Nef thus employs a dual mechanism to disturb early TCR signaling by limiting the communication between LAT and SLP-76 and preventing the dynamic formation of SLP-76-signaling MCs.  相似文献   

16.
Chiang J  Hodes RJ 《PloS one》2011,6(4):e18542
Extensive studies of pre-TCR- and TCR-dependent signaling have led to characterization of a pathway deemed essential for efficient T cell development, and comprised of a cascade of sequential events involving phosphorylation of Lck and ZAP-70, followed by phosphorylation of LAT and SLP-76, and subsequent additional downstream events. Of interest, however, reports from our lab as well as others have indicated that the requirements for ZAP-70, LAT, and SLP-76 are partially reversed by inactivation of c-Cbl (Cbl), an E3 ubiquitin ligase that targets multiple molecules for ubiquitination and degradation. Analysis of signaling events in these Cbl knockout models, including the recently reported analysis of SLP-76 transgenes defective in interaction with Vav1, suggested that activation of Vav1 might be a critical event in alternative pathways of T cell development. To extend the analysis of signaling requirements for thymic development, we have therefore assessed the effect of Cbl inactivation on the T cell developmental defects that occur in Vav1-deficient mice. The defects in Vav1-deficient thymic development, including a marked defect in DN3-DN4 transition, were completely reversed by Cbl inactivation, accompanied by enhanced phosphorylation of PLC-γ1 and ERKs in response to pre-TCR/TCR cross-linking of Vav1-/-Cbl-/- DP thymocytes. Taken together, these results suggest a substantially modified paradigm for pre-TCR/TCR signaling and T cell development. The observed consensus pathways of T cell development, including requirements for ZAP-70, LAT, SLP-76, and Vav1, appear to reflect the restriction by Cbl of an otherwise much broader set of molecular pathways capable of mediating T cell development.  相似文献   

17.
c-Cbl-mediated regulation of LAT-nucleated signaling complexes   总被引:2,自引:0,他引:2       下载免费PDF全文
The engagement of the T-cell receptor (TCR) causes the rapid recruitment of multiple signaling molecules into clusters with the TCR. Upon receptor activation, the adapters LAT and SLP-76, visualized as chimeric proteins tagged with yellow fluorescent protein, transiently associate with and then rapidly dissociate from the TCR. Previously, we demonstrated that after recruitment into signaling clusters, SLP-76 is endocytosed in vesicles via a lipid raft-dependent pathway that requires the interaction of the endocytic machinery with ubiquitylated proteins. In this study, we focus on LAT and demonstrate that signaling clusters containing this adapter are internalized into distinct intracellular compartments and dissipate rapidly upon TCR activation. The internalization of LAT was inhibited in cells expressing versions of the ubiquitin ligase c-Cbl mutated in the RING domain and in T cells from mice lacking c-Cbl. Moreover, c-Cbl RING mutant forms suppressed LAT ubiquitylation and caused an increase in cellular LAT levels, as well as basal and TCR-induced levels of phosphorylated LAT. Collectively, these data indicate that following the rapid formation of signaling complexes upon TCR stimulation, c-Cbl activity is involved in the internalization and possible downregulation of a subset of activated signaling molecules.  相似文献   

18.
19.
20.
Stimulation of the T cell antigen receptor (TCR) induces formation of a phosphorylation-dependent signaling network via multiprotein complexes, whose compositions and dynamics are incompletely understood. Using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics, we investigated the kinetics of signal propagation after TCR-induced protein tyrosine phosphorylation. We confidently assigned 77 proteins (of 758 identified) as a direct or indirect consequence of tyrosine phosphorylation that proceeds in successive "signaling waves" revealing the temporal pace at which tyrosine kinases activate cellular functions. The first wave includes thymocyte-expressed molecule involved in selection (THEMIS), a protein recently implicated in thymocyte development but whose signaling role is unclear. We found that tyrosine phosphorylation of THEMIS depends on the presence of the scaffold proteins Linker for activation of T cells (LAT) and SH2 domain-containing lymphocyte protein of 76 kDa (SLP-76). THEMIS associates with LAT, presumably via the adapter growth factor receptor-bound protein 2 (Grb2) and with phospholipase Cγ1 (PLC-γ1). RNAi-mediated THEMIS knock-down inhibited TCR-induced IL-2 gene expression due to reduced ERK and nuclear factor of activated T cells (NFAT)/activator protein 1 (AP-1) signaling, whereas JNK, p38, or nuclear factor κB (NF-κB) activation were unaffected. Our study reveals the dynamics of TCR-dependent signaling networks and suggests a specific role for THEMIS in early TCR signalosome function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号