首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipid droplets (LDs) are intracellular storage sites for triacylglyerols (TAGs) and steryl esters, and play essential roles in energy metabolism and membrane biosynthesis. Adipose triglyceride lipase (ATGL) is the key enzyme for TAG hydrolysis (lipolysis) in adipocytes and LD degradation in nonadipocyte cells. Lipase activity of ATGL in vivo largely depends on its C-terminal sequence as well as coactivation by CGI-58. Here we demonstrate that the C-terminal hydrophobic domain in ATGL is required for LD targeting and CGI-58-independent LD degradation. Overexpression of wild type ATGL causes a dramatic decrease in LD size and number, whereas a mutant lacking the hydrophobic domain fails to localize to LDs and to affect their morphology. Interestingly, coexpression of CGI-58 is able to promote LD turnover mediated by this ATGL mutant. Recently we have discovered that G0S2 acts as an inhibitor of ATGL activity and ATGL-mediated lipolysis. Here we show that G0S2 binds to ATGL irrelevantly of its activity state or the presence of CGI-58. In G0S2-expressing cells, the combined expression of CGI-58 and ATGL is incapable of stimulating LD turnover. We propose that CGI-58 and G0S2 regulate ATGL via non-competing mechanisms.  相似文献   

2.
TNF-α potently stimulates basal lipolysis in adipocytes, which may contribute to hyperlipidemia and peripheral insulin resistance in obesity. Recent studies show that adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) act sequentially in catalyzing the first two steps of adipose lipolysis in response to β-adrenergic stimulation. Here, we sought to determine their functional roles in TNF-α-induced lipolysis. Silencing of ATGL expression in adipocytes almost completely abolished basal and TNF-α-induced glycerol release. In comparison, the glycerol release under the same conditions was only partially decreased upon reduction in expression of either HSL or the ATGL coactivator CGI-58. Interestingly, overexpression of ATGL restored the lipolytic rates in cells with silenced HSL or CGI-58, indicating a predominant role for ATGL. While expression of ATGL, HSL and CGI-58 remains mostly unaffected, TNF-α treatment caused a rapid abrogation of the ATGL inhibitory protein G0S2. TNF-α drastically decreased the level of G0S2 mRNA, and the level of G0S2 protein could be maintained by inhibiting proteasomal protein degradation using MG-132. Furthermore, coexpression of G0S2 was able to significantly decrease TNF-α-stimulated lipolysis mediated by overexpressed ATGL or CGI-58. We propose that the early reduction in G0S2 content is permissive for TNF-α-induced lipolysis.  相似文献   

3.
Lipolysis is a critical metabolic pathway contributing to energy homeostasis through degradation of triacylglycerides stored in lipid droplets (LDs), releasing fatty acids. Neutral lipid lipases act at the oil/water interface. In mammalian cells, LD surfaces are coated with one or more members of the perilipin protein family, which serve important functions in regulating lipolysis. We investigated mechanisms by which three perilipin proteins control lipolysis by adipocyte triglyceride lipase (ATGL), a key lipase in adipocytes and non-adipose cells. Using a cell culture model, we examined interactions of ATGL and its co-lipase CGI-58 with perilipin 1 (perilipin A), perilipin 2 (adipose differentiation-related protein), and perilipin 5 (LSDP5) using multiple techniques as follows: anisotropy Forster resonance energy transfer, co-immunoprecipitation, [(32)P]orthophosphate radiolabeling, and measurement of lipolysis. The results show that ATGL interacts with CGI-58 and perilipin 5; the latter is selectively expressed in oxidative tissues. Both proteins independently recruited ATGL to the LD surface, but with opposite effects; interaction of ATGL with CGI-58 increased lipolysis, whereas interaction of ATGL with perilipin 5 decreased lipolysis. In contrast, neither perilipin 1 nor 2 interacted directly with ATGL. Activation of protein kinase A (PKA) increased [(32)P]orthophosphate incorporation into perilipin 5 by 2-fold, whereas neither ATGL nor CGI-58 was labeled under the incubation conditions. Cells expressing both ectopic perilipin 5 and ATGL showed a 3-fold increase in lipolysis following activation of PKA. Our studies establish perilipin 5 as a novel ATGL partner and provide evidence that the protein composition of perilipins at the LD surface regulates lipolytic activity of ATGL.  相似文献   

4.
Adipose triglyceride lipase (ATGL) was recently identified as an important triacylglycerol (TG) hydrolase promoting the catabolism of stored fat in adipose and nonadipose tissues. We now demonstrate that efficient ATGL enzyme activity requires activation by CGI-58. Mutations in the human CGI-58 gene are associated with Chanarin-Dorfman Syndrome (CDS), a rare genetic disease where TG accumulates excessively in multiple tissues. CGI-58 interacts with ATGL, stimulating its TG hydrolase activity up to 20-fold. Alleles of CGI-58 carrying point mutations associated with CDS fail to activate ATGL. Moreover, CGI-58/ATGL coexpression attenuates lipid accumulation in COS-7 cells. Antisense RNA-mediated reduction of CGI-58 expression in 3T3-L1 adipocytes inhibits TG mobilization. Finally, expression of functional CGI-58 in CDS fibroblasts restores lipolysis and reverses the abnormal TG accumulation typical for CDS. These data establish an important biochemical function for CGI-58 in the lipolytic degradation of fat, implicating this lipolysis activator in the pathogenesis of CDS.  相似文献   

5.
CGI-58/ABHD5 coactivates adipose triglyceride lipase (ATGL). In adipocytes, CGI-58 binds to perilipin 1A on lipid droplets under basal conditions, preventing interaction with ATGL. Upon activation of protein kinase A (PKA), perilipin 1A is phosphorylated and CGI-58 rapidly disperses into the cytoplasm, enabling lipase coactivation. Because the amino acid sequence of murine CGI-58 has a predicted PKA consensus sequence of RKYS239S240, we hypothesized that phosphorylation of CGI-58 is involved in this process. We show that Ser239 of murine CGI-58 is a substrate for PKA using phosphoamino acid analysis, MS, and immuno­blotting approaches to study phosphorylation of recombinant CGI-58 and endogenous CGI-58 of adipose tissue. Phosphorylation of CGI-58 neither increased nor impaired coactivation of ATGL in vitro. Moreover, Ser239 was not required for CGI-58 function to increase triacylglycerol turnover in human neutral lipid storage disorder fibroblasts that lack endogenous CGI-58. Both CGI-58 and S239A/S240A-mutated CGI-58 localized to perilipin 1A-coated lipid droplets in cells. When PKA was activated, WT CGI-58 dispersed into the cytoplasm, whereas substantial S239A/S240A-mutated CGI-58 remained on lipid droplets. Perilipin phosphorylation also contributed to CGI-58 dispersion. PKA-mediated phosphorylation of CGI-58 is required for dispersion of CGI-58 from perilipin 1A-coated lipid droplets, thereby increasing CGI-58 availability for ATGL coactivation.  相似文献   

6.
脂肪组织甘油三酯水解酶参与脂肪分解调控   总被引:2,自引:0,他引:2  
Xu C  Xu GH 《生理科学进展》2008,39(1):10-14
循环中游离脂肪酸增高与肥胖、胰岛素抵抗和2型糖尿病密切相关,其主要来源于脂肪细胞内甘油三酯水解.调控脂肪分解的脂肪酶主要包括激素敏感脂肪酶(hormone-sensitive lipase,HSL)和最近发现的脂肪组织甘油三酯水解酶(adipose triglyceride lipase,ATGL),后者主要分布在脂肪组织,特异水解甘油三酯为甘油二酯,其转录水平受多种因素调控.CGI-58(属于α/β水解酶家族蛋白),可以活化ATGL,基础条件下该蛋白和脂滴包被蛋白(perilipin)紧密结合于脂滴表面,蛋白激酶A激活刺激脂肪分解时,CGI-58与perilipin分离,进而活化ATGL.  相似文献   

7.
The rate-limiting enzyme in lipolysis, adipose triglyceride lipase (ATGL), is activated by comparative gene identification-58 (CGI-58) and inhibited by the G(0)/G(1) switch gene-2 (G0S2) protein. It is speculated that inhibition of ATGL is through a dose dependent manner of relative G0S2 protein content. There is little work examining G0S2 expression in lipolytic tissues, and the relative expression across oxidative tissues such as skeletal muscle has not yet been described. Three muscles, soleus (SOL), red gastrocnemius (RG), and white gastrocnemius (WG) were excised from 57-day old male Sprague-Dawley rats (n = 9). QRT-PCR was used for mRNA analysis, and western blotting was conducted to determine protein content. ATGL and G0S2 protein content were both greatest in the lipolytic SOL, with the least amount of both ATGL and G0S2 protein content found in the WG. CGI-58 protein content however did not mirror ATGL and G0S2 protein content, since the RG had the greatest CGI-58 protein content when compared to the SOL and WG. When comparing our tissues based on CGI-58-to-ATGL ratio and G0S2-to-ATGL ratio, it was discovered that contrary to oxidative demand, the glycolytic WG had the greatest activator CGI-58-to-ATGL ratio with the oxidative SOL having the least, and no differences in G0S2-to-ATGL across the three muscle types. These data suggest that the content of G0S2 relative to the lipase in skeletal muscle would not predict lipolytic potential.  相似文献   

8.
Adipose triglyceride lipase (ATGL) is required for efficient mobilization of triglyceride (TG) stores in adipose tissue and non-adipose tissues. Therefore, ATGL strongly determines the availability of fatty acids for metabolic reactions. ATGL activity is regulated by a complex network of lipolytic and anti-lipolytic hormones. These signals control enzyme expression and the interaction of ATGL with the regulatory proteins CGI-58 and G0S2. Up to date, it was unknown whether ATGL activity is also controlled by lipid intermediates generated during lipolysis. Here we show that ATGL activity is inhibited by long-chain acyl-CoAs in a non-competitive manner, similar as previously shown for hormone-sensitive lipase (HSL), the rate-limiting enzyme for diglyceride breakdown in adipose tissue. ATGL activity is only marginally inhibited by medium-chain acyl-CoAs, diglycerides, monoglycerides, and free fatty acids. Immunoprecipitation assays revealed that acyl-CoAs do not disrupt the protein–protein interaction of ATGL and its co-activator CGI-58. Furthermore, inhibition of ATGL is independent of the presence of CGI-58 and occurs directly at the N-terminal patatin-like phospholipase domain of the enzyme. In conclusion, our results suggest that inhibition of the major lipolytic enzymes ATGL and HSL by long-chain acyl-CoAs could represent an effective feedback mechanism controlling lipolysis and protecting cells from lipotoxic concentrations of fatty acids and fatty acid-derived lipid metabolites.  相似文献   

9.
Ho PC  Chuang YS  Hung CH  Wei LN 《Cellular signalling》2011,23(8):1396-1403
Receptor-interacting protein 140 (RIP140) is abundantly expressed in mature adipocyte and modulates gene expression involved in lipid and glucose metabolism. Protein kinase C epsilon and protein arginine methyltransferase 1 can sequentially stimulate RIP140 phosphorylation and then methylation, thereby promoting its export to the cytoplasm. Here we report a lipid signal triggering cytoplasmic accumulation of RIP140, and a new functional role for cytoplasmic RIP140 in adipocyte to regulate lipolysis. Increased lipid content, particularly an elevation in diacylglycerol levels, promotes RIP140 cytoplasmic accumulation and increased association with lipid droplets (LDs) by its direct interaction with perilipin. By interacting with RIP140, perilipin more efficiently recruits hormone-sensitive lipase (HSL) to LDs and enhances adipose triglyceride lipase (ATGL) forming complex with CGI-58, an activator of ATGL. Consequentially, HSL can more readily access its substrates, and ATGL is activated, ultimately enhancing lipolysis. In adipocytes, blocking cytoplasmic RIP140 accumulation reduces basal and isoproterenol-stimulated lipolysis and the pro-inflammatory potential of their conditioned media (i.e. activating NF-κB and inflammatory genes in macrophages). These results show that in adipocytes with high lipid contents, RIP140 increasingly accumulates in the cytoplasm and enhances triglyceride catabolism by directly interacting with perilipin. The study suggests that reducing nuclear export of RIP140 might be a useful means of controlling adipocyte lipolysis.  相似文献   

10.
Chanarin–Dorfman syndrome (CDS) is a rare autosomal recessive disease of lipid metabolism; it is associated with congenital ichthyosis typed as non-bullous congenital ichthyosiform erythroderma (NCIE). CDS is characterized by the presence of an abnormally large number of cytosolic lipid droplets containing triacylglycerol (TG) in various tissues such as the skin, liver, and leukocytes. Mutations in the CGI-58 (also called ABHD5) gene encoding a 39-kDa protein of the α/β hydrolase domain subfamily have been shown to be responsible for this disorder. In adipocytes, CGI-58 is involved in TG degradation on lipid droplets; in doing so, it coordinates with several lipolytic factors including perilipin, a member of the PAT protein family, and ATGL, a putative rate-limiting lipase in adipocytes. In quiescent adipocytes, CGI-58 interacts with perilipin on the surfaces of lipid droplets. Upon hormonal stimulation, CGI-58 facilitates massive lipolysis by activating ATGL. Some CGI-58 mutations found in CDS patients cancel the ability to interact with perilipin or activate ATGL, indicating that the loss of these interactions is physiologically important. However, based on the tissue distributions of these lipolytic factors, there are likely multiple molecular targets of CGI-58 actions. This in turn gives rise to the multiple phenotypes of CDS, such as ichthyosis, liver steatosis, or neurosensory diseases.  相似文献   

11.
谢宇潇  高士争  赵素梅 《遗传》2013,35(5):595-598
细胞中脂滴(Lipid droplets, LDs)表面存在多个调控脂肪储存和分解的蛋白, 这些蛋白对机体的脂肪代谢起着很重要的调控作用。CGI-58(Comparative gene identification-58)分布在LDs表面, 属于α/β水解酶折叠家族, 是脂肪甘油三酯脂肪酶(Adipose triglyceride lipase, ATGL)和依赖酰基辅酶A溶血磷脂酸酰基转移酶(Lysophosphatidic acid acyltransferase, LPAAT)的激活剂。在脂肪分解过程中, CGI-58结合PAT蛋白家族成员之一的脂滴包被蛋白(Perlipin)和ATGL, 促进脂肪分解, 同时CGI-58对ATGL的激活功能受脂滴包被蛋白家族成员间蛋白质与蛋白质相互作用的影响。文章结合国内外研究热点, 针对CGI-58在动物脂类代谢中的作用进行了综述。  相似文献   

12.
13.
Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme of lipolysis. ATGL specifically hydrolyzes triacylglycerols (TGs), thereby generating diacylglycerols and free fatty acids. ATGL's enzymatic activity is co-activated by the protein comparative gene identification-58 (CGI-58) and inhibited by the protein G0/G1 switch gene 2 (G0S2). The enzyme is predicted to act through a catalytic dyad (Ser47, Asp166) located within the conserved patatin domain (Ile10-Leu178). Yet, neither an experimentally determined 3D structure nor a model of ATGL is currently available, which would help to understand how CGI-58 and G0S2 modulate ATGL's activity. In this study we determined the minimal active domain of ATGL. This minimal fragment of ATGL could still be activated and inhibited by CGI-58 and G0S2, respectively. Furthermore, we show that this minimal domain is sufficient for protein-protein interaction of ATGL with its regulatory proteins. Based on these data, we generated a 3D homology model for the minimal domain. It strengthens our experimental finding that amino acids between Leu178 and Leu254 are essential for the formation of a stable protein domain related to the patatin fold. Our data provide insights into the structure-function relationship of ATGL and indicate higher structural similarities in the N-terminal halves of mammalian patatin-like phospholipase domain containing proteins, (PNPLA1, -2,- 3 and -5) than originally anticipated.  相似文献   

14.
Perilipins, the major structural proteins coating the surfaces of mature lipid droplets of adipocytes, play an important role in the regulation of triacylglycerol storage and hydrolysis. We have used proteomic analysis to identify CGI-58, a member of the alpha/beta-hydrolase fold family of enzymes, as a component of lipid droplets of 3T3-L1 adipocytes. CGI-58 mRNA is highly expressed in adipose tissue and testes, tissues that also express perilipins, and at lower levels in liver, skin, kidney, and heart. Both endogenous CGI-58 and an ectopic CGI-58-GFP chimera show diffuse cytoplasmic localization in 3T3-L1 preadipocytes, but localize almost exclusively to the surfaces of lipid droplets in differentiated 3T3-L1 adipocytes. The localization of endogenous CGI-58 was investigated in 3T3-L1 cells stably expressing mutated forms of perilipin using microscopy. CGI-58 binds to lipid droplets coated with perilipin A or mutated forms of perilipin with an intact C-terminal sequence from amino acid 382 to 429, but not to lipid droplets coated with perilipin B or mutated perilipin A lacking this sequence. Immunoprecipitation studies confirmed these findings, but also showed co-precipitation of perilipin B and CGI-58. Remarkably, activation of cAMP-dependent protein kinase by the incubation of 3T3-L1 adipocytes with isoproterenol and isobutylmethylxanthine disperses CGI-58 from the surfaces of lipid droplets to a cytoplasmic distribution. This shift in subcellular localization can be reversed by the addition of propanolol to the culture medium. Thus, CGI-58 binds to perilipin A-coated lipid droplets in a manner that is dependent upon the metabolic status of the adipocyte and the activity of cAMP-dependent protein kinase.  相似文献   

15.
The protein G0/G1 switch gene 2 (G0S2) is a small basic protein that functions as an endogenous inhibitor of adipose triglyceride lipase (ATGL), a key enzyme in intracellular lipolysis. In this study, we identified a short sequence covering residues Lys-20 to Ala-52 in G0S2 that is still fully capable of inhibiting mouse and human ATGL. We found that a synthetic peptide corresponding to this region inhibits ATGL in a noncompetitive manner in the nanomolar range. This peptide is highly selective for ATGL and does not inhibit other lipases, including hormone-sensitive lipase, monoacylglycerol lipase, lipoprotein lipase, and patatin domain-containing phospholipases 6 and 7. Because increased lipolysis is linked to the development of metabolic disorders, the inhibition of ATGL by G0S2-derived peptides may represent a novel therapeutic tool to modulate lipolysis.  相似文献   

16.
Lipolysis is the catabolic pathway by which triglycerides are hydrolyzed into fatty acids. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) have the capacity to hydrolyze in vitro the first ester bond of triglycerides, but their respective contributions to whole cell lipolysis in human adipocytes is unclear. Here, we have investigated the roles of HSL, ATGL, and its coactivator CGI-58 in basal and forskolin-stimulated lipolysis in a human white adipocyte model, the hMADS cells. The hMADS adipocytes express the various components of fatty acid metabolism and show lipolytic capacity similar to primary cultured adipocytes. We show that lipolysis and fatty acid esterification are tightly coupled except in conditions of stimulated lipolysis. Immunocytochemistry experiments revealed that acute forskolin treatment promotes HSL translocation from the cytosol to small lipid droplets and redistribution of ATGL from the cytosol and large lipid droplets to small lipid droplets, resulting in enriched colocalization of the two lipases. HSL or ATGL overexpression resulted in increased triglyceride-specific hydrolase capacity, but only ATGL overexpression increased whole cell lipolysis. HSL silencing had no effect on basal lipolysis and only partially reduced forskolin-stimulated lipolysis. Conversely, silencing of ATGL or CGI-58 significantly reduced basal lipolysis and essentially abolished forskolin-stimulated lipolysis. Altogether, these results suggest that ATGL/CGI-58 acts independently of HSL and precedes its action in the sequential hydrolysis of triglycerides in human hMADS adipocytes.Adipose tissue fat stores in humans are mainly dependent upon fatty acid (FA)2 supply, FA esterification to triglycerides (TG), and TG breakdown, or lipolysis. Adipose tissue lipolysis is governed by three lipases. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) both have the capacity to initiate TG degradation by cleaving the first ester bond, but HSL is unique in its capacity to break down the second ester bond, converting diglycerides (DG) to monoglycerides (13). The non-rate-limiting monoglyceride lipase completes lipolysis by cleaving the last ester bond from a monoglyceride molecule, leading to glycerol release (4). Adipose tissue lipolysis has received much attention over the past 10 years because of its altered regulation in obesity (5).HSL resides freely in the cytosol and can associate with lipid droplets (LD). It is regulated by hormones such as catecholamines, insulin, and natriuretic peptides. Catecholamines bind to β-adrenoceptors on adipocyte cell membranes and activate cyclic AMP-dependent protein kinase. Similarly, natriuretic peptides bind to type A receptors and activate cyclic GMP-dependent protein kinase (6). The protein kinase action in stimulated lipolysis is 2-fold: 1) phosphorylation of HSL, leading to its translocation from the cytosol to LD (7, 8), and 2) phosphorylation of perilipin A (6, 9, 10), the predominant perilipin isoform in adipocytes, enhancing interaction between HSL and LD. The importance of HSL activity in stimulating complete lipolysis is indisputable, particularly given its unique capacity to hydrolyze DG. However, lipolysis is not exclusively dependent upon HSL because HSL null mice revealed residual TG lipase activity in adipose tissue (2, 11). Another adipose tissue lipase was identified (3, 12, 13). ATGL, also known as desnutrin or patatin-like phospholipase domain-containing protein 2, shows affinity toward TG only (3, 14). ATGL is activated by CGI-58, an esterase/thioesterase/lipase subfamily protein devoid of TG hydrolase enzymatic activity (15, 16). The role of HSL and ATGL has been investigated in murine fat cell lipolysis, but the relative importance of these lipases in basal and protein kinase A-stimulated human fat cell lipolysis has remained elusive.Increased fat mass is associated with defects in adipose tissue metabolism. In obesity, resistance to catecholamine-induced lipolysis is observed (1719). This inhibition of lipolysis may be naturally occurring as an adaptive protective mechanism to minimize FA release and its deleterious consequences on metabolism. Indeed, decreased expression of HSL and ATGL has been observed in isolated adipocytes and differentiated preadipocytes of obese subjects and adipose tissue of insulin-resistant subjects, respectively (2023). However, by virtue of its mass, adipose tissue basal lipolysis elevates circulating levels of FAs in obese subjects, thereby increasing the risk of insulin resistance. Therefore, the use of pharmacological lipid-lowering agents that act through inhibition of lipolysis has been a promising research avenue leading to the development of several series of HSL inhibitors (24).Herein, we sought to examine the respective contributions of HSL and ATGL to lipolysis and re-esterification in fat cells derived from human adipose tissue derived-multipotent stem cells (termed hMADS cells). These cells, which exhibit at a clonal level normal karyotype, self-renewal ability, and no tumorigenicity, are able to differentiate into functional adipocytes (25, 26). We investigated the localization of HSL and ATGL in basal and stimulated lipolytic conditions and studied lipase activities and whole cell lipolysis in adipocytes with altered expression levels of HSL, ATGL, and its coactivator CGI-58. Our results provide novel insights into ATGL localization and its critical role with coactivator CGI-58 in DG provision to HSL during basal and stimulated lipolysis.  相似文献   

17.
Triacylglycerols (TGs) stored in lipid droplets (LDs) are hydrolyzed in a highly regulated metabolic process called lipolysis to free fatty acids that serve as energy substrates for β-oxidation, precursors for membrane lipids and signaling molecules. Comparative gene identification-58 (CGI-58) stimulates the enzymatic activity of adipose triglyceride lipase (ATGL), which catalyzes the hydrolysis of TGs to diacylglycerols and free fatty acids. In adipose tissue, protein-protein interactions between CGI-58 and the LD coating protein perilipin 1 restrain the ability of CGI-58 to activate ATGL under basal conditions. Phosphorylation of perilipin 1 disrupts these interactions and mobilizes CGI-58 for the activation of ATGL. We have previously demonstrated that the removal of a peptide at the N terminus (residues 10–31) of CGI-58 abrogates CGI-58 localization to LDs and CGI-58-mediated activation of ATGL. Here, we show that this tryptophan-rich N-terminal peptide serves as an independent LD anchor, with its three tryptophans serving as focal points of the left (harboring Trp21 and Trp25) and right (harboring Trp29) anchor arms. The solution state NMR structure of a peptide comprising the LD anchor bound to dodecylphosphocholine micelles as LD mimic reveals that the left arm forms a concise hydrophobic core comprising tryptophans Trp21 and Trp25 and two adjacent leucines. Trp29 serves as the core of a functionally independent anchor arm. Consequently, simultaneous tryptophan alanine permutations in both arms abolish localization and activity of CGI-58 as opposed to tryptophan substitutions that occur in only one arm.  相似文献   

18.
19.
Lipolysis in adipocytes, the hydrolysis of triacylglycerol (TAG) to release fatty acids (FAs) and glycerol for use by other organs, is a unique function of white adipose tissue. Lipolysis in adipocytes occurs at the surface of cytosolic lipid droplets, which have recently gained much attention as dynamic organelles integral to lipid metabolism. Desnutrin/ATGL is now established as a bona fide TAG hydrolase and mutations in human desnutrin/ATGL/PNPLA2, as well as in its activator, comparative gene identification 58, are associated with Neutral Lipid Storage Disease. Furthermore, recent identification of AdPLA as the major adipose phospholipase A2, has led to the discovery of a dominant autocrine/paracrine regulation of lipolysis through PGE2. Here, we review emerging concepts in the key players in lipolysis and the regulation of this process. We also examine recent findings in mouse models and humans with alterations/mutations in genes involved in lipolysis and discuss activation of lipolysis in adipocytes as a potential therapeutic target.  相似文献   

20.
The anabolism and catabolism of myocardial triacylglycerol (TAG) stores are important processes for normal cardiac function. TAG synthesis detoxifies and stockpiles fatty acids to prevent lipotoxicity, whereas TAG hydrolysis (lipolysis) remobilizes fatty acids from endogenous storage pools as energy substrates, signaling molecules, or precursors for complex lipids. This study focused on the role of G0/G1 switch 2 (G0S2) protein, which was previously shown to inhibit the principal TAG hydrolase adipose triglyceride lipase (ATGL), in the regulation of cardiac lipolysis. Using wild-type and mutant mice, we show the following: (i) G0S2 is expressed in the heart and regulated by the nutritional status with highest expression levels after re-feeding. (ii) Cardiac-specific overexpression of G0S2 inhibits cardiac lipolysis by direct protein-protein interaction with ATGL. This leads to severe cardiac steatosis. The steatotic hearts caused by G0S2 overexpression are less prone to fibrotic remodeling or cardiac dysfunction than hearts with a lipolytic defect due to ATGL deficiency. (iii) Conversely to the phenotype of transgenic mice, G0S2 deficiency results in a de-repression of cardiac lipolysis and decreased cardiac TAG content. We conclude that G0S2 acts as a potent ATGL inhibitor in the heart modulating cardiac substrate utilization by regulating cardiac lipolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号