首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2014,49(3):395-401
The effect of ten typical organic acids and five aldehydes present in lignocellulosic hydrolysates on the cell membrane integrity of oleaginous yeast Trichosporon fermentans was evaluated by flow cytometry. Overall, organic acids affected the cell membrane integrity of T. fermentans more significantly than that of aldehydes albeit aldehydes are more toxic to T. fermentans. The PI (Propidium Iodide) uptake rate of T. fermentans’ cells gradually decreased as fermentation going on, indicating that T. fermentans could overcome the inhibition of organic acids or aldehydes by adaption. Interestingly, in some cases, the effect of organic acids or aldehydes on the cell membrane integrity of T. fermentans was well related to their hydrophobicity. However, for the outliers, no obvious similar phenomena were observed. Thus, the attack on hydrophobic sites of cell membrane was not the only determinant for the damage of organic acids or aldehydes on cell membrane integrity of T. fermentans.  相似文献   

2.

Background

Ionic liquid (IL) pretreatment has emerged as a promising technique that enables complete utilization of lignocellulosic biomass for biofuel production. However, imidazolium IL has recently been shown to exhibit inhibitory effect on cell growth and product formation of industrial microbes, such as oleaginous microorganisms. To date, the mechanism of this inhibition remains largely unknown.

Results

In this study, the feasibility of [Bmim][OAc]-pretreated rice straw hydrolysate as a substrate for microbial lipid production by Geotrichum fermentans, also known as Trichosporon fermentans, was evaluated. The residual [Bmim][OAc] present in the hydrolysate caused a reduction in biomass and lipid content (43.6 and 28.1%, respectively) of G. fermentans, compared with those of the control (7.8 g/L and 52.6%, respectively). Seven imidazolium ILs, [Emim][DEP], [Emim]Cl, [Amim]Cl, [Bmim]Cl, [Bzmim]Cl, [Emim][OAc], and [Bmim][OAc], capable of efficient pretreatment of lignocellulosic biomass were tested for their effects on the cell growth and lipid accumulation of G. fermentans to better understand the impact of imidazolium IL on the lipid production. All the ILs tested inhibited the cell growth and lipid accumulation. In addition, both the cation and the anion of IL contributed to IL toxicity. The side chain of IL cations showed a clear impact on toxicity. On examining IL anions, [OAc]? was found to be more toxic than those of [DEP]? and Cl?. IL exhibited its toxicity by inhibiting sugar consumption and key enzyme (malic enzyme and ATP-citrate lyase) activities of G. fermentans. Cell membrane permeability was also altered to different extents in the presence of various ILs. Scanning electron microscopy revealed that IL induces fibrous structure on the surface of G. fermentans cell, which might represent an adaptive mechanism of the yeast to IL.

Conclusions

This work gives some mechanistic insights into the impact of imidazolium IL on the cell growth and lipid accumulation of oleaginous yeast, which is important for IL integration in lignocellulosic biofuel production, especially for microbial lipid production.
  相似文献   

3.
Fermentation of liquid hot water (LHW) pretreated Miscanthus giganteus (MG) by Clostridium beijerinckii NCIMB 8052 was investigated towards understanding the toxicity of lignocellulose-derived inhibitors to solventogenic Clostridium species vis-à-vis butanol production. While C. beijerinckii NCIMB 8052 did not grow in undiluted MG hydrolysate-based fermentation medium, supplementation of this medium with Calcium carbonate enabled the growth of C. beijerinckii NCIMB 8052 and production of butanol. Using high-performance liquid chromatography (HPLC) and spectrophotometric assays, LHW-pretreated MG was found to contain lignocellulose-derived microbial inhibitory compounds; some of which were transformed by exponentially growing C. beijerinckii to less inhibitory compounds during fermentation. Contrary to all expectations, the reduction product of furfural, furfuryl alcohol, inhibited butanol production by C. beijerinckii by more than 16 %. Collectively, these results provide new insights into why lignocellulosic biomass hydrolysates are recalcitrant to fermentation to biofuels and chemicals.  相似文献   

4.
In vivo detoxification of furfural by the oleaginous yeast, Trichosporon fermentans, under lipid-producing (i.e., nitrogen-limited) conditions was evaluated for the first time. During the initial fermentation phase, furfural was rapidly reduced to furfuryl alcohol, which is more toxic to T. fermentans than furfural. Furfuryl alcohol was subsequently oxidized to furoic acid which has low toxicity to T. fermentans and is the end product of the in vivo detoxification of furfural in this organism. These observations explain how T. fermentans can grow and accumulate lipids in medium containing furfural. They also indicate that strategies to minimize the transient production of furfuryl alcohol could further improve the capacity of the strain to produce lipids from furfural-containing lignocellulosic hydrolysates.  相似文献   

5.
Microbial oil production from sulphuric acid treated rice straw hydrolysate (SARSH) by Trichosporon fermentans was performed for the first time. Fermentation of SARSH without detoxification gave a poor lipid yield of 1.7 g/l, which was much lower than the result with glucose or xylose as the single carbon source (13.6 g/l or 9.9 g/l). The detoxification pretreatment, including overliming, concentration, and adsorption by Amberlite XAD-4 improved the fermentability of SARSH significantly by removing the inhibitors in SARSH. A total biomass of 28.6 g/l with a lipid content of 40.1% (corresponding to a lipid yield of 11.5 g/l) could be achieved after cultivation of T. fermentans on the detoxified SARSH for 8 days. Moreover, besides SARSH, T. fermentans could also utilize mannose, galactose, or cellobiose, in hydrolysates of other natural lignocellulosic materials as the single carbon source to grow and accumulate lipid with a high yield (at least 10.4 g/l). Hence, it is a promising strain for microbial oil production and thus biodiesel preparation from agro-industrial residues, especially lignocellulosic materials.  相似文献   

6.
The toxic fermentation inhibitors in lignocellulosic hydrolysates raise serious problems for the microbial production of fuels and chemicals. Furfural is considered to be one of the most toxic compounds among these inhibitors. Here, we describe the detoxification of furfural in Corynebacterium glutamicum ATCC13032 under both aerobic and anaerobic conditions. Under aerobic culture conditions, furfuryl alcohol and 2-furoic acid were produced as detoxification products of furfural. The ratio of the products varied depending on the initial furfural concentration. Neither furfuryl alcohol nor 2-furoic acid showed any toxic effect on cell growth, and both compounds were determined to be the end products of furfural degradation. Interestingly, unlike under aerobic conditions, most of the furfural was converted to furfuryl alcohol under anaerobic conditions, without affecting the glucose consumption rate. Both the NADH/NAD+ and NADPH/NADP+ ratio decreased in the accordance with furfural concentration under both aerobic and anaerobic conditions. These results indicate the presence of a single or multiple endogenous enzymes with broad and high affinity for furfural and co-factors in C. glutamicum ATCC13032.  相似文献   

7.
Lignocellulose can be readily hydrolyzed into a mixture of sugars using dilute mineral acids. During hydrolysis, a variety of inhibitors are also produced which include aromatic alcohols from lignin and furfuryl alcohol from pentose destruction. Seven compounds were investigated individually and in binary combinations (catechol, coniferyl alcohol, furfuryl alcohol, guaiacol, hydroquinone, methylcatechol, and vanillyl alcohol). Aromatic alcohols and furfuryl alcohol inhibited ethanol production from xylose in batch fermentations primarily by inhibiting the growth of Escherichia coli LY01, the biocatalyst. The toxicities of these compounds were directly related to their hydrophobicity. Methylcatechol was the most toxic compound tested (MIC = 1.5 g/L). In binary combination, the extent of growth inhibition was roughly additive for most compounds tested. However, combinations with furfuryl alcohol and furfural (furaldehyde) appear synergistic in toxicity. When compared individually, alcohol components which are formed during hemicellulose hydrolysis are less toxic for growth than the aldehydes and organic acids either on a weight basis or a molar basis.  相似文献   

8.
Li Q  Metthew Lam LK  Xun L 《Biodegradation》2011,22(6):1215-1225
Ethanol is a renewable biofuel, and it can be produced from lignocellulosic biomass. The biomass is usually converted to hydrolysates that consist of sugar and sugar derivatives, such as furfural. Yeast ferments sugar to ethanol, but furfural higher than 3 mM is inhibitory. It can take several days for yeast cells to reduce furfural to non-inhibitory furfuryl alcohol before producing ethanol. Bioreduction of furfural to furfuryl alcohol before fermentation may relieve yeast from furfural toxicity. We observed that Cupriavidus necator JMP134, a strict aerobe, rapidly reduced 17 mM furfural to less than 3 mM within 14 min with cell turbidity of 1.0 at 600 nm at 50°C. The rapid reduction consumed ethanol. The “furfural reductase” (FurX) was purified, and it oxidized ethanol to acetaldehyde and reduced furfural to furfuryl alcohol with NAD+ as the cofactor. The protein was identified with mass spectrometry fingerprinting to be a hypothetical protein belonging to Zn-dependent alcohol dehydrogenase family. The furX-inactivation mutant of C. necator JMP134 lost the ability to rapidly reduce furfural, and Escherichia coli producing recombinant FurX gained the ability. Thus, an alcohol dehydrogenase enabled bacteria to rapidly reduce furfural with ethanol as the reducing power.  相似文献   

9.
Zhang Y  Han B  Ezeji TC 《New biotechnology》2012,29(3):345-351
The ability of fermenting microorganisms to tolerate furan aldehyde inhibitors (furfural and 5-hydroxymethyl furfural (HMF)) will enhance efficient bioconversion of lignocellulosic biomass hydrolysates to fuels and chemicals. The effect of furfural and HMF on butanol production by Clostridium acetobutylicum 824 was investigated. Whereas specific growth rates, μ, of C. acetobutylicum in the presence of furfural and HMF were in the range of 15-85% and 23-78%, respectively, of the uninhibited Control, μ increased by 8-15% and 23-38% following exhaustion of furfural and HMF in the bioreactor. Using high performance liquid chromatography and spectrophotometric assays, batch fermentations revealed that furfural and HMF were converted to furfuryl alcohol and 2,5-bis-hydroxymethylfuran, respectively, with specific conversion rates of 2.13g furfural and 0.50g HMF per g (biomass) per hour, by exponentially growing C. acetobutylicum. Biotransformation of these furans to lesser inhibitory compounds by C. acetobutylicum will probably enhance overall fermentation of lignocellulosic hydrolysates to butanol.  相似文献   

10.
Effects of furfural on the aerobic metabolism of the yeast Saccharomyces cerevisiae were studied by performing chemostat experiments, and the kinetics of furfural conversion was analyzed by performing dynamic experiments. Furfural, an important inhibitor present in lignocellulosic hydrolysates, was shown to have an inhibitory effect on yeast cells growing respiratively which was much greater than the inhibitory effect previously observed for anaerobically growing yeast cells. The residual furfural concentration in the bioreactor was close to zero at all steady states obtained, and it was found that furfural was exclusively converted to furoic acid during respiratory growth. A metabolic flux analysis showed that furfural affected fluxes involved in energy metabolism. There was a 50% increase in the specific respiratory activity at the highest steady-state furfural conversion rate. Higher furfural conversion rates, obtained during pulse additions of furfural, resulted in respirofermentative metabolism, a decrease in the biomass yield, and formation of furfuryl alcohol in addition to furoic acid. Under anaerobic conditions, reduction of furfural partially replaced glycerol formation as a way to regenerate NAD+. At concentrations above the inlet concentration of furfural, which resulted in complete replacement of glycerol formation by furfuryl alcohol production, washout occurred. Similarly, when the maximum rate of oxidative conversion of furfural to furoic acid was exceeded aerobically, washout occurred. Thus, during both aerobic growth and anaerobic growth, the ability to tolerate furfural appears to be directly coupled to the ability to convert furfural to less inhibitory compounds.  相似文献   

11.
One of the major challenges faced in commercial production of lignocellulosic bioethanol is the inhibitory compounds generated during the thermo-chemical pre-treatment step of biomass. These inhibitory compounds are toxic to fermenting micro-organisms. The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds formed or released during thermo-chemical pre-treatment step such as acid and steam explosion. This review describes the application and/or effect of biological detoxification (removal of inhibitors before fermentation) or use of bioreduction capability of fermenting yeasts on the fermentability of the hydrolysates. Inhibition of yeast fermentation by the inhibitor compounds in the lignocellulosic hydrolysates can be reduced by treatment with enzymes such as the lignolytic enzymes, for example, laccase and micro-organisms such as Trichoderma reesei, Coniochaeta ligniaria NRRL30616, Trametes versicolor, Pseudomonas putida Fu1, Candida guilliermondii, and Ureibacillus thermosphaericus. Microbial and enzymatic detoxifications of lignocellulosic hydrolysate are mild and more specific in their action. The efficiency of enzymatic process is quite comparable to other physical and chemical methods. Adaptation of the fermentation yeasts to the lignocellulosic hydrolysate prior to fermentation is suggested as an alternative approach to detoxification. Increases in fermentation rate and ethanol yield by adapted micro-organisms to acid pre-treated lignocellulosic hydrolysates have been reported in some studies. Another approach to alleviate the inhibition problem is to use genetic engineering to introduce increased tolerance by Saccharomyces cerevisiae, for example, by overexpressing genes encoding enzymes for resistance against specific inhibitors and altering co-factor balance. Cloning of the laccase gene followed by heterologous expression in yeasts was shown to provide higher enzyme yields and permit production of laccases with desired properties for detoxification of lignocellulose hydrolysates. A combination of more inhibitor-tolerant yeast strains with efficient feed strategies such as fed-batch will likely improve lignocellulose-to-ethanol process robustness.  相似文献   

12.
Lignocellulosic biomass hydrolysis inevitably coproduces byproducts that may have various affects on downstream biotransformation. It is imperative to document the inhibitor tolerance ability of microbial strain in order to utilize biomass hydrolysate more effectively. To achieve better lipid production by Rhodosporidium toruloides Y4, we performed fermentation experiments in the presence of some representative inhibitors. We found that acetate, 5-hydroxymethylfurfural and syringaldehyde had slightly inhibitory effects; p-hydroxybenzaldehyde and vanillin were toxic at a concentration over 10 mM; and furfural and its derivatives furfuryl alcohol and furoic acid inhibited cell growth by 45% at around 1 mM. We further demonstrated that inhibition is generally additive, although strong synergistic inhibitions were also observed. Finally, lipid production afforded good results in the presence of six inhibitors at their respective concentrations usually found in biomass hydrolysates. Fatty acid compositional profile of lipid samples indicated that those inhibitors had little effects on lipid biosynthesis. Our work will be useful for optimization of biomass hydrolysis processes and lipid production using lignocellulosic materials.  相似文献   

13.
A decreased fermentation rate due to inhibition is a significant problem for economic conversion of acid-pretreated lignocellulose hydrolysates to ethanol, since the inhibition gives rise to a requirement for separate detoxification steps. Together with acetic acid, the sugar degradation products furfural and 5-hydroxymethyl furfural are the inhibiting compounds found at the highest concentrations in hydrolysates. These aldehydes have been shown to affect both the specific growth rate and the rate of fermentation by yeast. Two strains of Saccharomyces cerevisiae with different abilities to ferment inhibiting hydrolysates were evaluated in fermentations of a dilute acid hydrolysate from spruce, and the reducing activities for furfural and 5-hydroxymethyl furfural were determined. Crude cell extracts of a hydrolysate-tolerant strain (TMB3000) converted both furfural and 5-hydroxymethyl furfural to the corresponding alcohol at a rate that was severalfold higher than the rate observed for cell extracts of a less tolerant strain (CBS 8066), thereby confirming that there is a correlation between the fermentation rate in a lignocellulosic hydrolysate and the bioconversion capacity of a strain. The in vitro NADH-dependent furfural reduction capacity of TMB3000 was three times higher than that of CBS 8066 (1,200 mU/mg protein and 370 mU/mg protein, respectively) in fed-batch experiments. Furthermore, the inhibitor-tolerant strain TMB3000 displayed a previously unknown NADH-dependent reducing activity for 5-hydroxymethyl furfural (400 mU/mg protein during fed-batch fermentation of hydrolysates). No corresponding activity was found in strain CBS 8066 (<2 mU/mg). The ability to reduce 5-hydroxymethyl furfural is an important characteristic for the development of yeast strains with increased tolerance to lignocellulosic hydrolysates.  相似文献   

14.
The formation of toxic fermentation inhibitors such as furfural and 5-hydroxy-2-methylfurfural (HMF) during acid (pre-)treatment of lignocellulose, calls for the efficient removal of these compounds. Lignocellulosic hydrolysates can be efficiently detoxified biologically with microorganisms that specifically metabolize the fermentation inhibitors while preserving the sugars for subsequent use by the fermentation host. The bacterium Cupriavidus basilensis HMF14 was isolated from enrichment cultures with HMF as the sole carbon source and was found to metabolize many of the toxic constituents of lignocellulosic hydrolysate including furfural, HMF, acetate, formate and a host of aromatic compounds. Remarkably, this microorganism does not grow on the most abundant sugars in lignocellulosic hydrolysates: glucose, xylose and arabinose. In addition, C. basilensis HMF14 can produce polyhydroxyalkanoates. Cultivation of C. basilensis HMF14 on wheat straw hydrolysate resulted in the complete removal of furfural, HMF, acetate and formate, leaving the sugar fraction intact. This unique substrate profile makes C. basilensis HMF14 extremely well suited for biological removal of inhibitors from lignocellulosic hydrolysates prior to their use as fermentation feedstock.  相似文献   

15.
Furfural is one of main inhibitors in hemicellulose hydrolysates such as xylose mother liquor, but its positive effect on the production of validamycin-A (VAL-A), a widely used agricultural antibiotic, was interestingly found in fermentation of Streptomyces hygroscopicus 5008. The furfural level in medium up to 1 g/L was effectively converted to furfuryl alcohol and furoic acid by the microorganism. Both intracellular H2O2 level and ValG enzyme activity of the cells were enhanced by furfural addition. Xylose mother liquor medium with supplementation of about 1 g/L furfural could enhance the VAL-A titer by 39 %. This work is helpful to VAL-A fermentation using the hemicellulose hydrolysate.  相似文献   

16.
Summary The inhibitory effects of seven closely related lignin degradation products on xylose fermentation by Klebsiella pneumoniae were studied. Compounds were added in varying concentrations. Less heavily substituted phenolics (at concentrations of, 0.1–0.4 g/l) were more inhibitory to growth and solvent production than vanillyl or syringyl derivatives. All of the cultures recovered from this inhibition after a prolonged incubation period. When the mechanism of the organism's recovery was investigated, GC and LC analysis showed that 43.5% of the vanillin was metabolized to vanillyl alcohol. Several unidentifiable compounds were also detected in trace amounts. K. pneumoniae also metabolized vanilly alcohol (54% of original supplement) and syringaldehyde; however, unlike vanillin, there was no predominant metabolite derived from these compounds. None of the metabolites derived from vanillyl alcohol could be identified while only the corresponding alcohol and trimethoxybenzene were identified among the syringaldehyde derived metabolites.  相似文献   

17.
Fermentation of wood hydrolysates to desirable products, such as fuel ethanol, is made difficult by the presence of inhibitory compounds in the hydrolysates. Here we present a novel method to increase the fermentability of lignocellulosic hydrolysates: enzymatic detoxification. Besides the detoxification effect, treatment with purified enzymes provides a new way to identify inhibitors by assaying the effect of enzymatic attack on specific compounds in the hydrolysate. Laccase, a phenol oxidase, and lignin peroxidase purified from the ligninolytic basidiomycete fungus Trametes versicolor were studied using a lignocellulosic hydrolysate from willow pretreated with steam and SO2. Saccharomyces cerevisiae was employed for ethanolic fermentation of the hydrolysates. The results show more rapid consumption of glucose and increased ethanol productivity for samples treated with laccase. Treatment of the hydrolysate with lignin peroxidase also resulted in improved fermentability. Analyses by GC-MS indicated that the mechanism of laccase detoxification involves removal of monoaromatic phenolic compounds present in the hydrolysate. The results support the suggestion that phenolic compounds are important inhibitors of the fermentation process. Received: 3 November 1997 / Received revision: 4 February 1998 / Accepted: 6 February 1998  相似文献   

18.
The production of fuel ethanol from low‐cost lignocellulosic biomass currently suffers from several limitations. One of them is the presence of inhibitors in lignocellulosic hydrolysates that are released during pre‐treatment. These compounds inhibit growth and hamper the production of ethanol, thereby affecting process economics. To delineate the effects of such complex mixtures, we conducted a chemical analysis of four different real‐world lignocellulosic hydrolysates and determined their toxicological effect on yeast. By correlating the potential inhibitor abundance to the growth‐inhibiting properties of the corresponding hydrolysates, we identified furfural as an important contributor to hydrolysate toxicity for yeast. Subsequently, we conducted a targeted evolution experiment to improve growth behaviour of the half industrial Saccharomyces cerevisiae strain TMB3400 in the hydrolysates. After about 300 generations, representative clones from these evolved populations exhibited significantly reduced lag phases in medium containing the single inhibitor furfural, but also in hydrolysate‐supplemented medium. Furthermore, these strains were able to grow at concentrations of hydrolysates that effectively killed the parental strain and exhibited significantly improved bioconversion characteristics under industrially relevant conditions. The improved resistance of our evolved strains was based on their capacity to remain viable in a toxic environment during the prolonged, furfural induced lag phase.  相似文献   

19.
《Process Biochemistry》2014,49(1):173-180
Xylitol can be obtained from the pentose-rich hemicellulosic fraction of agricultural residues, such as extracted olive pomace, by fermentation. Dilute acid hydrolysis of lignocellulosic materials, produces the release of potential inhibitory compounds mainly furan derivatives, aliphatic acids, and phenolic compounds. In order to study the potential on the increase of the hydrolysate fermentability, detoxification experiments based on diananofiltration membrane separation processes were made. Two membranes, NF270 and NF90, were firstly evaluated using hydrolysate model solutions under total recirculation mode, to identify the best membrane for the detoxification. NF270 was chosen to be used in the diananofiltration experiment as it showed the lowest rejection for toxic compounds and highest permeate flux. Diananofiltration experiments, for hydrolysate model solutions and hydrolysate liquor, showed that nanofiltration is able to deplete inhibitory compounds and to obtain solutions with higher xylose content. Conversely to non-detoxified hydrolysates, nanofiltration detoxified hydrolysates enabled yeast growth and xylitol production by the yeast Debaryomyces hansenii, clearly pointing out that detoxification is an absolute requirement for extracted olive pomace dilute acid hydrolysate bioconversion.  相似文献   

20.
A decreased fermentation rate due to inhibition is a significant problem for economic conversion of acid-pretreated lignocellulose hydrolysates to ethanol, since the inhibition gives rise to a requirement for separate detoxification steps. Together with acetic acid, the sugar degradation products furfural and 5-hydroxymethyl furfural are the inhibiting compounds found at the highest concentrations in hydrolysates. These aldehydes have been shown to affect both the specific growth rate and the rate of fermentation by yeast. Two strains of Saccharomyces cerevisiae with different abilities to ferment inhibiting hydrolysates were evaluated in fermentations of a dilute acid hydrolysate from spruce, and the reducing activities for furfural and 5-hydroxymethyl furfural were determined. Crude cell extracts of a hydrolysate-tolerant strain (TMB3000) converted both furfural and 5-hydroxymethyl furfural to the corresponding alcohol at a rate that was severalfold higher than the rate observed for cell extracts of a less tolerant strain (CBS 8066), thereby confirming that there is a correlation between the fermentation rate in a lignocellulosic hydrolysate and the bioconversion capacity of a strain. The in vitro NADH-dependent furfural reduction capacity of TMB3000 was three times higher than that of CBS 8066 (1,200 mU/mg protein and 370 mU/mg protein, respectively) in fed-batch experiments. Furthermore, the inhibitor-tolerant strain TMB3000 displayed a previously unknown NADH-dependent reducing activity for 5-hydroxymethyl furfural (400 mU/mg protein during fed-batch fermentation of hydrolysates). No corresponding activity was found in strain CBS 8066 (<2 mU/mg). The ability to reduce 5-hydroxymethyl furfural is an important characteristic for the development of yeast strains with increased tolerance to lignocellulosic hydrolysates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号