首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and have multiple effects in various tissues including adipose inflammation, a condition characterized by increased local release of the pro-lipolytic cytokine tumor necrosis factor-alpha (TNF-α). Whether miRNAs regulate adipocyte lipolysis is unknown. We set out to determine whether miRNAs affect adipocyte lipolysis in human fat cells. To this end, eleven miRNAs known to be present in human adipose tissue were over-expressed in human in vitro differentiated adipocytes followed by assessments of TNF-α and glycerol levels in conditioned media after 48 h. Three miRNAs (miR-145, -26a and let-7d) modulated both parameters in parallel. However, while miR-26a and let-7d decreased, miR-145 increased both glycerol release and TNF-α secretion. Further studies were focused therefore on miR-145 since this was the only stimulator of lipolysis and TNF-α secretion. Time-course analysis demonstrated that miR-145 over-expression up-regulated TNF-α expression/secretion followed by increased glycerol release. Increase in TNF-α production by miR-145 was mediated via activation of p65, a member of the NF-κB complex. In addition, miR-145 down-regulated the expression of the protease ADAM17, resulting in an increased fraction of membrane bound TNF-α, which is the more biologically active form of TNF-α. MiR-145 overexpression also increased the phosphorylation of activating serine residues in hormone sensitive lipase and decreased the mRNA expression of phosphodiesterase 3B, effects which are also observed upon TNF-α treatment in human adipocytes. We conclude that miR-145 regulates adipocyte lipolysis via multiple mechanisms involving increased production and processing of TNF-α in fat cells.  相似文献   

2.
Dendritic cells (DCs) are potent antigen-presenting cells with a promising potential in cancer immunotherapy. Cbl proteins are E3 ubiquitin ligases and have been implicated in regulating the functional activity of various immune cells. As an example, c-Cbl negatively affects DC activation. We here describe that another member of the Cbl-protein family (i.e. Cbl-b) is highly expressed in murine bone-marrow-derived DCs (BMDCs). Differentiation of cblb−/− bone marrow mononuclear cells into classical BMDCs is unaltered, except enhanced induction of DEC-205 (CD205) expression. When tested in mixed-lymphocyte reaction (MLR), cblb−/− BMDCs exhibit increased allo-stimulatory capacity in vitro. BMDCs were next in vitro stimulated by various toll like receptor (TLR)-agonists (LPS, Poly(I:C), CpG) and exposed to FITC-labeled dextran. Upon TLR-stimulation, cblb−/− BMDCs produce higher levels of proinflammatory cytokines (IL-1α, IL-6 and TNF-α) and exhibit a slightly higher level of FITC-dextran uptake. To further characterize the functional significance of cblb−/− BMDCs we tested them in antigen-specific T cell responses against ovalbumin (OVA) protein and peptides, activating either CD8+ OT-I or CD4+ OT-II transgenic T cells. However, cblb−/− BMDCs are equally effective in inducing antigen-specific T cell responses when compared to wildtype BMDCs both in vitro and in vivo. The migratory capacity into lymph nodes during inflammation was similarly not affected by the absence of Cbl-b. In line with these observations, cblb−/− peptide-pulsed BMDCs are equally effective vaccines against OVA-expressing B16 tumors in vivo when compared to wildtype BMDCs. We conclude that in contrast to c-Cbl, Cbl-b plays only a limited role in the induction of Ag-specific T cell responses by murine BMDCs in vitro and in vivo.  相似文献   

3.
4.
Lipopolysaccharide (LPS), a component of gram-negative bacterial cell walls, has been shown to have a strong adjuvant effect towards inhaled antigens contributing to airway inflammation. Isoflavones are anti-inflammatory molecules present in abundant quantities in soybeans. We investigated the effect of isoflavones on human dendritic cell (DC) activation via LPS stimulation and subsequent DC-mediated effector cell function both in vitro and in a mouse model of upper airway inflammation. Human monocyte-derived DCs (MDDC) were matured with LPS (or TNF-α) +/− isoflavones (genistein or daidzein). The surface expression levels of DC activation markers were analyzed by flow cytometry. Mature DCs +/− isoflavones were washed and cultured with freshly-isolated allogenic naïve CD4+ T cells for 5 days or with autologous natural killer (NK) cells for 2 hours. The percentages of proliferating IFN-γ+ CD4+ T cells and cytokine levels in culture supernatants were assessed. NK cell degranulation and DC cytotoxicity were measured by flow cytometry. Isoflavones significantly suppressed the activation-induced expression of DC maturation markers (CD83, CD80, CD86) and MHC class I but not MHC class II molecules in vitro. Isoflavone treatment inhibited the ability of LPS-DCs to induce IFN-γ in CD4+ T cells. NK cell degranulation and the percentage of dead DCs were significantly increased in isoflavone-treated DC-NK co-culture experiments. Dietary isoflavones suppressed the mucosal immune response to intra-nasal sensitization of mice to ovalbumin. Similar results were obtained when isoflavones were co-administered during sensitization. These results demonstrate that soybean isoflavones suppress immune sensitization by suppressing DC-maturation and its subsequent DC-mediated effector cell functions.  相似文献   

5.
6.
Chronic inflammation is fundamental for the induction of insulin resistance in the muscle tissue of vertebrates. Although several miRNAs are thought to be involved in the development of insulin resistance, the role of miRNAs in the association between inflammation and insulin resistance in muscle tissue is poorly understood. Herein, we investigated the aberrant expression of miRNAs by conducting miRNA microarray analysis of TNF-α-treated mouse C2C12 myotubes. We identified two miRNAs that were upregulated and six that were downregulated by a >1.5-fold change compared to normal cells. Among the findings, qRT-PCR analysis confirmed that miR-494 is consistently upregulated by TNF-α-induced inflammation. Overexpression of miR-494 in CHOIR/IRS1 and C2C12 myoblasts suppressed insulin action by down-regulating phosphorylations of GSK-3α/β, AS160 and p70S6K, downstream of Akt. Moreover, overexpression of miR-494 did not regulate TNF-α-mediated inflammation . Among genes bearing the seed site for miR-494, RT-PCR analysis showed that the expression of Stxbp5, an inhibitor of glucose transport, was downregulated following miR-494 inhibition. In contrast, the expression of PTEN decreased in the cells analyzed, thus showing that both positive and negative regulators of insulin action may be simultaneously controlled by miR-494. To investigate the overall effect of miR-494 on insulin signaling, we performed a PCR array analysis containing 84 genes related to the insulin signaling pathway, and we observed that 25% of genes were downregulated (P<0.05) and 11% were upregulated (P<0.05). These results confirm that miR-494 might contribute to insulin sensitivity by positive and negative regulation of the expression of diverse genes. Of note, PCR array data showed downregulation of Slc2A4, a coding gene for Glut4. Altogether, the present study concludes that the upregulation of miR-494 expression by TNF-α-mediated inflammation exacerbates insulin resistance. Therefore, we suggest that miR-494 could prove an important target for the diagnosis and therapy of inflammation-mediated insulin resistance in muscle.  相似文献   

7.
8.
9.
We have previously reported 27 differentially expressed microRNAs (miRNAs) during human monocyte differentiation into immature dendritic cells (imDCs) and mature DCs (mDCs). However, their roles in DC differentiation and function remain largely elusive. Here, we report that microRNA (miR)-146a and miR-146b modulate DC apoptosis and cytokine production. Expression of miR-146a and miR-146b was significantly increased upon monocyte differentiation into imDCs and mDCs. Silencing of miR-146a and/or miR-146b in imDCs and mDCs significantly prevented DC apoptosis, whereas overexpressing miR-146a and/or miR-146b increased DC apoptosis. miR-146a and miR-146b expression in imDCs and mDCs was inversely correlated with TRAF6 and IRAK1 expression. Furthermore, siRNA silencing of TRAF6 and/or IRAK1 in imDCs and mDCs enhanced DC apoptosis. By contrast, lentivirus overexpression of TRAF6 and/or IRAK1 promoted DC survival. Moreover, silencing of miR-146a and miR-146b expression had little effect on DC maturation but enhanced IL-12p70, IL-6, and TNF-α production as well as IFN-γ production by IL-12p70-mediated activation of natural killer cells, whereas miR-146a and miR-146b overexpression in mDCs reduced cytokine production. Silencing of miR-146a and miR-146b in DCs also down-regulated NF-κB inhibitor IκBα and increased Bcl-2 expression. Our results identify a new negative feedback mechanism involving the miR-146a/b-TRAF6/IRAK1-NF-κB axis in promoting DC apoptosis.  相似文献   

10.
Ginseng extract has been shown to possess certain anti-virus, anti-tumor and immune-activating effects. However, the immunostimulatory effect of ginseng berry extract (GB) has been less well characterized. In this study, we investigated the effect of GB on the activation of mouse dendritic cells (DCs) in vitro and in vivo. GB treatment induced up-regulation of co-stimulatory molecules in bone marrow-derived DCs (BMDCs). Interestingly, GB induced a higher degree of co-stimulatory molecule up-regulation than ginseng root extract (GR) at the same concentrations. Moreover, in vivo administration of GB promoted up-regulation of CD86, MHC class I and MHC class II and production of IL-6, IL-12 and TNF-α in spleen DCs. GB also promoted the generation of Th1 and Tc1 cells. Furthermore, Toll like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) signaling pathway were essential for DC activation induced by GB. In addition, GB strongly prompted the proliferation of ovalbumin (OVA)-specific CD4 and CD8 T cells. Finally, GB induced DC activation in tumor-bearing mice and the combination of OVA and GB treatment inhibited B16-OVA tumor cell growth in C57BL/6 mice. These results demonstrate that GB is a novel tumor therapeutic vaccine adjuvant by promoting DC and T cell activation.  相似文献   

11.
Dendritic cells (DCs) are professional antigen presenting cells that have the dual ability to stimulate immunity and maintain tolerance. However, the signalling pathways mediating tolerogenic DC function in vivo remain largely unknown. The β-catenin pathway has been suggested to promote a regulatory DC phenotype. The aim of this study was to unravel the role of β-catenin signalling to control DC function in the autoimmune collagen-induced arthritis model (CIA). Deletion of β-catenin specifically in DCs was achieved by crossing conditional knockout mice with a CD11c-Cre transgenic mouse line. Bone marrow-derived DCs (BMDCs) were generated and used to study the maturation profile of these cells in response to a TLR2 or TLR4 ligand stimulation. CIA was induced by intra-dermal immunization with 100 μg chicken type II collagen in complete Freund’s adjuvant on days 0 and 21. CIA incidence and severity was monitored macroscopically and by histology. The T cell profile as well as their cytokine production were analysed by flow cytometry. Lack of β-catenin specifically in DCs did not affect the spontaneous, TLR2- or TLR4-induced maturation and activation of BMDCs or their cytokine production. Moreover, no effect on the incidence and severity of CIA was observed in mice lacking β-catenin in CD11c+ cells. A decreased frequency of splenic CD3+CD8+ T cells and of regulatory T cells (Tregs) (CD4+CD25highFoxP3+), but no changes in the frequency of splenic Th17 (CCR6+CXCR3-CCR4+), Th2 (CCR6-CXCR3-CCR4+) and Th1 (CCR6-CXCR3+CCR4-) cells were observed in these mice under CIA condition. Furthermore, the expression of IL-17A, IL-17F, IL-22, IL-4 or IFNγ was also not affected. Our data indicate that ablation of β-catenin expression in DCs did not alter the course and severity of CIA. We conclude that although deletion of β-catenin resulted in a lower frequency of Tregs, this decrease was not sufficient to aggravate the onset and severity of CIA.  相似文献   

12.
13.
14.
Type I interferon (IFN-I) have emerged as crucial mediators of cellular signals controlling DC differentiation and function. Human DC differentiated from monocytes in the presence of IFN-α (IFN-α DC) show a partially mature phenotype and a special capability of stimulating CD4+ T cell and cross-priming CD8+ T cells. Likewise, plasmacytoid DC (pDC) are blood DC highly specialized in the production of IFN-α in response to viruses and other danger signals, whose functional features may be shaped by IFN-I. Here, we investigated the molecular mechanisms stimulated by IFN-α in driving human monocyte-derived DC differentiation and performed parallel studies on peripheral unstimulated and IFN-α-treated pDC. A specific miRNA signature was induced in IFN-α DC and selected miRNAs, among which miR-23a and miR-125b, proved to be negatively associated with up-modulation of Blimp-1 occurring during IFN-α-driven DC differentiation. Of note, monocyte-derived IFN-α DC and in vitro IFN-α-treated pDC shared a restricted pattern of miRNAs regulating Blimp-1 expression as well as some similar phenotypic, molecular and functional hallmarks, supporting the existence of a potential relationship between these DC populations. On the whole, these data uncover a new role of Blimp-1 in human DC differentiation driven by IFN-α and identify Blimp-1 as an IFN-α-mediated key regulator potentially accounting for shared functional features between IFN-α DC and pDC.  相似文献   

15.
16.

Background

There have been few reports on the role of Fc receptors (FcRs) and immunoglobulin G (IgG) in asthma. The purpose of this study is to clarify the role of inhibitory FcRs and antigen presenting cells (APCs) in pathogenesis of asthma and to evaluate antigen-transporting and presenting capacity by APCs in the tracheobronchial mucosa.

Methods

In FcγRIIB deficient (KO) and C57BL/6 (WT) mice, the effects of intratracheal instillation of antigen-specific IgG were analysed using the model with sensitization and airborne challenge with ovalbumin (OVA). Thoracic lymph nodes instilled with fluorescein-conjugated OVA were analysed by fluorescence microscopy. Moreover, we analysed the CD11c+ MHC class II+ cells which intaken fluorescein-conjugated OVA in thoracic lymph nodes by flow cytometry. Also, lung-derived CD11c+ APCs were analysed by flow cytometry. Effects of anti-OVA IgG1 on bone marrow dendritic cells (BMDCs) in vitro were also analysed. Moreover, in FcγRIIB KO mice intravenously transplanted dendritic cells (DCs) differentiated from BMDCs of WT mice, the effects of intratracheal instillation of anti-OVA IgG were evaluated by bronchoalveolar lavage (BAL).

Results

In WT mice, total cells and eosinophils in BAL fluid reduced after instillation with anti-OVA IgG1. Anti-OVA IgG1 suppressed airway inflammation in hyperresponsiveness and histology. In addition, the number of the fluorescein-conjugated OVA in CD11c+ MHC class II+ cells of thoracic lymph nodes with anti-OVA IgG1 instillation decreased compared with PBS. Also, MHC class II expression on lung-derived CD11c+ APCs with anti-OVA IgG1 instillation reduced. Moreover, in vitro, we showed that BMDCs with anti-OVA IgG1 significantly decreased the T cell proliferation. Finally, we demonstrated that the lacking effects of anti-OVA IgG1 on airway inflammation on FcγRIIB KO mice were restored with WT-derived BMDCs transplanted intravenously.

Conclusion

Antigen-specific IgG ameliorates allergic airway inflammation via FcγRIIB on DCs.  相似文献   

17.
18.
In this study, we show that Mycobacterium avium subsp. Paratuberculosis MAP1305 induces the maturation of bone marrow-derived dendritic cells (BMDCs), a representative antigen presenting cell (APC). MAP1305 protein induces DC maturation and the production of pro-inflammatory cytokines (Interleukin (IL)-6), tumor necrosis factor (TNF)-α, and IL-1β) through Toll like receptor-4 (TLR-4) signaling by directly binding with TLR4. MAP1305 activates the phosphorylation of MAPKs, such as ERK, p38MAPK, and JNK, which is essential for DC maturation. Furthermore, MAP1305-treated DCs transform naïve T cells to polarized CD4+ and CD8+ T cells, thus indicating a key role for this protein in the Th1 polarization of the resulting immune response. Taken together, M. avium subsp. Paratuberculosis MAP1305 is important for the regulation of innate immune response through DC-mediated proliferation of CD4+ and CD8+ T cells. [BMB Reports 2014; 47(2): 115-120]  相似文献   

19.
Generally, most miRNAs that were up-regulated during differentiation promoted adipogenesis, but our research indicated that up-regulation of miR-145 in porcine preadipocytes did not promote but inhibit adipogenesis. In this study, miR-145 was significantly up-regulated during porcine dedifferentiated fat (DFAT) cells differentiation. In miR-145 overexpressed DFAT cells, adipogenesis was inhibited and triglycerides accumulation was decreased after hormone stimulation (P<0.05). Furthermore, up-regulation of miR-145 expression repressed induction of mRNA levels of adipogenic markers, such as CCAAT/enhancer-binding protein α (C/EBPα), and peroxisome proliferator-activated receptor γ2 (PPARγ2). These effects caused by miR-145 overexpression were mediated by Insulin receptor substrate 1 (IRS1) as a mechanism. These data suggested that induced miR-145 expression during differentiation could inhibit adipogenesis by targeting IRS1, and miR-145 may be novel agent for adipose tissue engineering.  相似文献   

20.
Dendritic cells (DCs) are the quintessential antigen-presenting cells of the human immune system and play a prime role in coordinating innate and adaptive immune responses, explaining the strong and still growing interest in their application for cancer immunotherapy. Much current research in the field of DC-based immunotherapy focuses on optimizing the culture conditions for in vitro DC generation in order to assure that DCs with the best possible immunogenic qualities are being used for immunotherapy. In this context, monocyte-derived DCs that are alternatively induced by interleukin-15 (IL-15 DCs) have attracted recent attention due to their superior immunostimulatory characteristics. In this study, we show that IL-15 DCs, in addition to potent tumor antigen-presenting function, possess tumoricidal potential and thus qualify for the designation of killer DCs. Notwithstanding marked expression of the natural killer (NK) cell marker CD56 on a subset of IL-15 DCs, we found no evidence of a further phenotypic overlap between IL-15 DCs and NK cells. Allostimulation and antigen presentation assays confirmed that IL-15 DCs should be regarded as bona fide myeloid DCs not only from the phenotypic but also from the functional point of view. Concerning their cytotoxic activity, we demonstrate that IL-15 DCs are able to induce apoptotic cell death of the human K562 tumor cell line, while sparing tumor antigen-specific T cells. The cytotoxicity of IL-15 DCs is predominantly mediated by granzyme B and, to a small extent, by tumor necrosis factor-α (TNF-α)-related apoptosis-inducing ligand (TRAIL) but is independent of perforin, Fas ligand and TNF-α. In conclusion, our data provide evidence of a previously unappreciated role for IL-15 in the differentiation of human monocytes towards killer DCs. The observation that IL-15 DCs have killer DC capacity lends further support to their implementation in DC-based immunotherapy protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号