首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dysregulation of genes in neurodevelopmental disorders that lead to social and cognitive phenotypes is a complex, multilayered process involving both genetics and epigenetics. Parent-of-origin effects of deletion and duplication of the 15q11-q13 locus leading to Angelman, Prader-Willi, and Dup15q syndromes are due to imprinted genes, including UBE3A, which is maternally expressed exclusively in neurons. UBE3A encodes a ubiquitin E3 ligase protein with multiple downstream targets, including RING1B, which in turn monoubiquitinates histone variant H2A.Z. To understand the impact of neuronal UBE3A levels on epigenome-wide marks of DNA methylation, histone variant H2A.Z positioning, active H3K4me3 promoter marks, and gene expression, we took a multi-layered genomics approach. We performed an siRNA knockdown of UBE3A in two human neuroblastoma cell lines, including parental SH-SY5Y and the SH(15M) model of Dup15q. Genes differentially methylated across cells with differing UBE3A levels were enriched for functions in gene regulation, DNA binding, and brain morphology. Importantly, we found that altering UBE3A levels had a profound epigenetic effect on the methylation levels of up to half of known imprinted genes. Genes with differential H2A.Z peaks in SH(15M) compared to SH-SY5Y were enriched for ubiquitin and protease functions and associated with autism, hypoactivity, and energy expenditure. Together, these results support a genome-wide epigenetic consequence of altered UBE3A levels in neurons and suggest that UBE3A regulates an imprinted gene network involving DNA methylation patterning and H2A.Z deposition.  相似文献   

2.
5-Aza-2'-deoxycytidine, approved by the FDA for the treatment of myelodysplastic syndrome (MDS), is incorporated into the DNA of dividing cells where it specifically inhibits DNA methylation by forming covalent complexes with the DNA methyltransferases (DNMTs). In an effort to study the correlations between DNA methylation, nucleosome remodeling, and gene reactivation, we investigate the integrated epigenetic events that worked coordinately to reprogram the methylated and closed promoters back to permissive chromatin configurations after 5-Aza-2'-deoxycytidine treatment. The ChIP results indicate that H2A.Z is deposited at promoter regions by the Snf2-related CBP activator protein (SRCAP) complex following DNA demethylation. According to our genome-wide expression and DNA methylation profiles, we find that the complete re-activation of silenced genes requires the insertion of the histone variant H2A.Z, which facilitates the acquisition of regions fully depleted of nucleosome as demonstrated by NOMe-seq (Nucleosome Occupancy Methylome-sequencing) assay. In contrast, SRCAP-mediated H2A.Z deposition is not required for maintaining the active status of constitutively expressed genes. By combining Hpa II digestion with NOMe-seq assay, we show that hemimethylated DNA, which is generated following drug incorporation, remains occupied by nucleosomes. Our data highlight H2A.Z as a novel and essential factor involved in 5-Aza-2'-deoxycytidine-induced gene reactivation. Furthermore, we elucidate that chromatin remodeling translates the demethylation ability of DNMT inhibitors to their downstream efficacies, suggesting future therapeutic implications for chromatin remodelers.  相似文献   

3.
4.
5.
6.
7.

Background

A number of neurodevelopmental syndromes are caused by mutations in genes encoding proteins that normally function in epigenetic regulation. Identification of epigenetic alterations occurring in these disorders could shed light on molecular pathways relevant to neurodevelopment.

Results

Using a genome-wide approach, we identified genes with significant loss of DNA methylation in blood of males with intellectual disability and mutations in the X-linked KDM5C gene, encoding a histone H3 lysine 4 demethylase, in comparison to age/sex matched controls. Loss of DNA methylation in such individuals is consistent with known interactions between DNA methylation and H3 lysine 4 methylation. Further, loss of DNA methylation at the promoters of the three top candidate genes FBXL5, SCMH1, CACYBP was not observed in more than 900 population controls. We also found that DNA methylation at these three genes in blood correlated with dosage of KDM5C and its Y-linked homologue KDM5D. In addition, parallel sex-specific DNA methylation profiles in brain samples from control males and females were observed at FBXL5 and CACYBP.

Conclusions

We have, for the first time, identified epigenetic alterations in patient samples carrying a mutation in a gene involved in the regulation of histone modifications. These data support the concept that DNA methylation and H3 lysine 4 methylation are functionally interdependent. The data provide new insights into the molecular pathogenesis of intellectual disability. Further, our data suggest that some DNA methylation marks identified in blood can serve as biomarkers of epigenetic status in the brain.  相似文献   

8.
9.
10.
With the goal of studying epigenetic alterations in fibrolamellar hepatocellular carcinoma (FLC) and establish an associated DNA methylation signature, we analyzed LINE-1 methylation in a cohort of FLC and performed next-generation sequencing of DNA methylation in a training set of pure-FLCs and non-cirrhotic hepatocellular carcinomas (nc-HCC). DNA methylation was correlated with gene expression. Furthermore, we established and validated an epigenetic signature differentiating pure-FLC from other HCCs. LINE-1 methylation correlated with shorter recurrence-free survival and overall survival in resected pure-FLC patients. Unsupervised clustering using CG sites located in islands distinguished pure-FLC from nc-HCC. Major DNA methylation changes occurred outside promoters, mainly in gene bodies and intergenic regions located in the vicinity of liver developmental genes (i.e., SMARCA4 and RXRA). Partially methylated domains were more prone to DNA methylation changes. Furthermore, we identified several putative tumor suppressor genes (e.g., DLEU7) and oncogenes (e.g., DUSP4). While ∼70% of identified gene promoters gaining methylation were marked by bivalent histone marks (H3K4me3/H3K27me3) in embryonic stem cells, ∼70% of those losing methylation were marked by H3K4me3. Finally, we established a pure FLC DNA methylation signature and validated it in an independent dataset. Our analysis reveals a distinct epigenetic signature of pure FLC as compared to nc-HCC, with DNA methylation changes occurring in the vicinity of liver developmental genes. These data suggest new options for targeting FLC based on cancer epigenome aberrations.  相似文献   

11.
Differentiation is an epigenetic program that involves the gradual loss of pluripotency and acquisition of cell type-specific features. Understanding these processes requires genome-wide analysis of epigenetic and gene expression profiles, which have been challenging in primary tissue samples due to limited numbers of cells available. Here we describe the application of high-throughput sequencing technology for profiling histone and DNA methylation, as well as gene expression patterns of normal human mammary progenitor-enriched and luminal lineage-committed cells. We observed significant differences in histone H3 lysine 27 tri-methylation (H3K27me3) enrichment and DNA methylation of genes expressed in a cell type-specific manner, suggesting their regulation by epigenetic mechanisms and a dynamic interplay between the two processes that together define developmental potential. The technologies we developed and the epigenetically regulated genes we identified will accelerate the characterization of primary cell epigenomes and the dissection of human mammary epithelial lineage-commitment and luminal differentiation.  相似文献   

12.
Both DNA methylation and post-translational histone modifications contribute to gene silencing, but the mechanistic relationship between these epigenetic marks is unclear. Mutations in two Arabidopsis genes, the KRYPTONITE (KYP) histone H3 lysine 9 (H3K9) methyltransferase and the CHROMOMETHYLASE3 (CMT3) DNA methyltransferase, cause a reduction of CNG DNA methylation, suggesting that H3K9 methylation controls CNG DNA methylation. Here we show that the chromodomain of CMT3 can directly interact with the N-terminal tail of histone H3, but only when it is simultaneously methylated at both the H3K9 and H3K27 positions. Furthermore, using chromatin immunoprecipitation analysis and immunohistolocalization experiments, we found that H3K27 methylation colocalizes with H3K9 methylation at CMT3-controlled loci. The H3K27 methylation present at heterochromatin was not affected by mutations in KYP or in several Arabidopsis PcG related genes including the Enhancer of Zeste homologs, suggesting that a novel pathway controls heterochromatic H3K27 methylation. Our results suggest a model in which H3K9 methylation by KYP, and H3K27 methylation by an unknown enzyme provide a combinatorial histone code for the recruitment of CMT3 to silent loci.  相似文献   

13.
14.
15.
16.
Small RNA-directed DNA methylation (RdDM) is an important epigenetic pathway in Arabidopsis that controls the expression of multiple genes and several developmental processes. RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3) are necessary factors in 24-nt small interfering RNA (siRNA) biogenesis, which is part of the RdDM pathway. Here, we found that Increase in BONSAI Methylation 1 (IBM1), a conserved JmjC family histone demethylase, is directly associated with RDR2 and DCL3 chromatin. The mutation of IBM1 induced the hypermethylation of H3K9 and DNA non-CG sites within RDR2 and DCL3, which repressed their expression. A genome-wide analysis suggested that the reduction in RDR2 and DCL3 expression affected siRNA biogenesis in a locus-specific manner and disrupted RdDM-directed gene repression. Together, our results suggest that IBM1 regulates gene expression through two distinct pathways: direct association to protect genes from silencing by preventing the coupling of histone and DNA methylation, and indirect silencing of gene expression through RdDM-directed repression.  相似文献   

17.
18.
Accumulating evidence has suggested that epigenetic marks including DNA methylation,small RNA and histone modification may involve hybrid vigor in plants.However,knowledge about how epigenetic marks in hybrids regulate gene expression is still limited.Based on genome-wide DNA methylation landscapes of Arabidopsis thaliana Ler and C24 ecotypes and their reciprocal F1 hybrids which were obtained in our previous work,we analyzed allele-specific DNA methylation and distinguished cis-and trans-regulated DNA methylation in hybrids.Our study indicated that both cis-and trans-regulated DNA methylation played roles in hybrids,when cis-regulation played a major role in CG methylation and trans-regulation played major roles in CHG and CHH methylation.In addition,we observed correlations between trans-regulated DNA methylation and siRNA densities.Enriched siRNA regions were significantly concurrent with highly trans-regulated DNA methylation regions.Our results illustrated DNA methylation regulation patterns integrated with siRNAs in Arabidopsis hybrids,and shed light on understanding the mechanism of epigenetic reprogramming for hybrid vigor.  相似文献   

19.
Gene MAGEA1 belongs to a group of human germline-specific genes that rely on DNA methylation for repression in somatic tissues. Many of these genes, termed cancer-germline (CG) genes, become demethylated and activated in a wide variety of tumors, where they encode tumor-specific antigens. The process leading to DNA demethylation of CG genes in tumors remains unclear. Previous data suggested that histone acetylation might be involved. Here, we investigated the relative contribution of DNA methylation and histone acetylation in the epigenetic regulation of gene MAGEA1. We show that MAGEA1 DNA hypomethylation in expressing melanoma cells is indeed correlated with local increases in histone H3 acetylation (H3ac). However, when MAGEA1-negative cells were exposed to a histone deacetylase inhibitor (TSA), we observed only short-term activation of the gene and detected no demethylation of its promoter. As a more sensitive assay, we used a cell clone harboring a methylated MAGEA1/hph construct, which confers resistance to hygromycin upon stable re-activation. TSA induced only transient de-repression of the transgene, and did not lead to the emergence of hygromycin-resistant cells. In striking contrast, transient depletion of DNA-methyltransferase-1 in the reporter cell clone gave rise to a hygromycin-resistant population, in which the re-activated MAGEA1/hph transgene displayed not only marked DNA hypomethylation, but also significant reversal of histone marks, including gains in H3ac and H3K4me2, and losses of H3K9me2. Collectively, our results indicate that DNA methylation has a dominant role in the epigenetic hierarchy governing MAGEA1 expression.  相似文献   

20.
DNA methylation and histone H4 acetylation play a role in gene regulation by modulating the structure of the chromatin. Recently, these two epigenetic modifications have dynamically and physically been linked. Evidence suggests that both modifications are involved in regulating imprinted genes - a subset of genes whose expression depends on their parental origin. Using immunoprecipitation assays, we investigate the relationship between DNA methylation, histone H4 acetylation and gene expression in the well-characterised imprinted Igf2-H19 domain on mouse chromosome 7. A systematic regional analysis of the acetylation status of the domain shows that parental-specific differences in acetylation of the core histone H4 are present in the promoter regions of both Igf2 and H19 genes, with the expressed alleles being more acetylated than the silent alleles. A correlation between DNA methylation, histone hypoacetylation and gene repression is evident only at the promoter region of the H19 gene. Treatment with trichostatin A, a specific inhibitor of histone deacetylase, reduces the expression of the active maternal H19 allele and this can be correlated with regional changes in acetylation within the upstream regulatory domain. The data suggest that histone H4 acetylation and DNA methylation have distinct functions on the maternal and paternal Igf2-H19 domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号