首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Three-dimensional epithelial culture models are widely used to emulate a more physiologically relevant microenvironment for the study of genes and signaling pathways. Prostate epithelial cells can grow into solid cell masses or acinus-like spheroids in Matrigel. To test if the ability to form acinus-like spheroids in Matrigel is dependent on how undifferentiated a cell is or whether it is tumor or nontumor, we established six novel epithelial cell lines. Primary prostate epithelial cells were immortalized using HPV16 E6 gene transduction and were named Shmac 2, 3, and 6 (nontumor); Shmac 4, Shmac 5, and P4E6 (tumor). All cell lines were phenotyped in monolayer culture, and their ability to form acinus-like spheroids in Matrigel investigated. The cell lines exhibited a wide range of population doubling times and all showed an intermediate phenotype in nonolayer culture (luminalCK+/basalCK+/CD44+/PSA+/AR). Only Shmac 5 cells formed acinus-like spheroids when cultured in Matrigel. Co-culture of the spheroids with fibroblasts advanced differentiation by inducing androgen receptor expression and epithelial polarization. Our findings indicate that tumor cells can form acinus-like spheroids in Matrigel.  相似文献   

2.

Objectives

To design novel 3D in vitro co-culture models based on the RGD-peptide-induced cell self-assembly technique.

Results

Multicellular spheroids from M-3 murine melanoma cells and L-929 murine fibroblasts were obtained directly from monolayer culture by addition of culture medium containing cyclic RGD-peptide. To reach reproducible architecture of co-culture spheroids, two novel 3D in vitro models with well pronounced core–shell structure from tumor spheroids and single mouse fibroblasts were developed based on this approach. The first was a combination of a RGD-peptide platform with the liquid overlay technique with further co-cultivation for 1–2 days. The second allowed co-culture spheroids to generate within polyelectrolyte microcapsules by cultivation for 2 weeks. M-3 cells (a core) and L-929 fibroblasts (a shell) were easily distinguished by confocal microscopy due to cell staining with DiO and DiI dyes, respectively.

Conclusions

The 3D co-culture spheroids are proposed as a tool in tumor biology to study cell–cell interactions as well as for testing novel anticancer drugs and drug delivery vehicles.
  相似文献   

3.
Interaction between tumor cells and stromal fibroblasts plays essential roles in tumor progression. However, its detailed molecular mechanism remains unclear. To understand the mechanism, we investigated molecules mediating this interaction using the three-dimensional (3D) co-culture system of Panc-1 pancreatic carcinoma cells with normal fibroblasts. When the two kinds of cells were placed on the top of collagen gel, the tumor cells scattered into the fibroblast layer, apparently undergoing epithelial‐mesenchymal transition. When fibroblasts were placed within collagen gel, Panc-1 cells actively invaded into the collagen gel, extending a microtubule-based long protrusion. Although transforming growth factor-β (TGF-β) and hepatocyte growth factor (HGF) individually stimulated the tumor cell invasion into collagen gel without fibroblasts, TGF-β signaling inhibitors (SB431542 and LY2157299) significantly enhanced the Panc-1 cell invasion in the 3D co-culture with fibroblasts. Experiments with HGF/Met signaling inhibitors or with the fibroblast conditioned medium revealed that HGF was a major invasion-promoting factor secreted from fibroblasts and SB431542 increased the HGF secretion by blocking the HGF-suppressing activity of cancer cell-derived TGF-β. These results indicate that HGF and TGF-β are critical regulators for both tumor–stroma interaction and tumor invasion. The results also suggest that TGF-β signaling inhibitors may promote tumor progression under some pathological conditions.  相似文献   

4.
Background aimsThe 3-dimensional (3-D) culture of various cell types reflects the in vivo situation more precisely than 2-dimensional (2-D) cell culture techniques. Spheroids as 3-D cell constructs have been used in tumor research for a long time. They have also been used to study angiogenic mechanisms, which are essential for the success of many tissue-engineering approaches. Several methods of forming spheroids are known, but there is a lack of systematic studies evaluating the performance of these techniques.MethodsWe evaluated the performance of the hanging drop technique, carboxymethyl cellulose technique and liquid overlay technique to form both mono- and co-culture spheroids consisting of primary osteoblasts, fibroblasts and endothelial cells. The performance of the three techniques was evaluated in terms of rate of yield and reproducibility. The size of the generated spheroids was determined systematically.ResultsThe liquid overlay technique was the most suitable for generating spheroids reproducibly. The rate of yield for this technique was between 60% and 100% for monoculture spheroids and 100% for co-culture spheroids. The size of the spheroids could be adjusted easily and precisely by varying the number of seeded cells organized in one spheroid. The formation of co-culture spheroids consisting of three different cell types was possible.ConclusionsOur results show that the most suitable technique for forming spheroids can vary from the chosen cell type, especially if primary cells are used. Co-culture spheroids consisting of three different cell types will be used to study angiogenic phenomena in further studies.  相似文献   

5.
AbstractThe development of new treatments for malignant melanoma, which has the worst prognosis among skin neoplasms, remains a challenge. The tumor microenvironment aids tumor cells to grow and resist to chemotherapeutic treatment. One way to mimic and study the tumor microenvironment is by using three-dimensional (3D) co-culture models (spheroids). In this study, a melanoma heterospheroid model composed of cancer cells, fibroblasts, and macrophages was produced by liquid-overlay technique using the agarose gel. The size, growth, viability, morphology, cancer stem-like cells population and inflammatory profile of tumor heterospheroids and monospheroids were analyzed to evaluate the influence of stromal cells on these parameters. Furthermore, dacarbazine cytotoxicity was evaluated using spheroids and two-dimensional (2D) melanoma model. After finishing the experiments, it was observed the M2 macrophages induced an anti-inflammatory microenvironment in heterospheroids; fibroblasts cells support the formation of the extracellular matrix, and a higher percentage of melanoma CD271 was observed in this model. Additionally, melanoma spheroids responded differently to the dacarbazine than the 2D melanoma culture as a result of their cellular heterogeneity and 3D structure. The 3D model was shown to be a fast and reliable tool for drug screening, which can mimic the in vivo tumor microenvironment regarding interactions and complexity.Graphic abstract   相似文献   

6.
3-dimensional (3D) culture models have the potential to bridge the gap between monolayer cell culture and in vivo studies. To benefit anti-cancer drug discovery from 3D models, new techniques are needed that enable their use in high-throughput (HT) screening amenable formats. We have established miniaturized 3D culture methods robust enough for automated HT screens. We have applied these methods to evaluate the sensitivity of normal and tumorigenic breast epithelial cell lines against a panel of oncology drugs when cultured as monolayers (2D) and spheroids (3D). We have identified two classes of compounds that exhibit preferential cytotoxicity against cancer cells over normal cells when cultured as 3D spheroids: microtubule-targeting agents and epidermal growth factor receptor (EGFR) inhibitors. Further improving upon our 3D model, superior differentiation of EC50 values in the proof-of-concept screens was obtained by co-culturing the breast cancer cells with normal human fibroblasts and endothelial cells. Further, the selective sensitivity of the cancer cells towards chemotherapeutics was observed in 3D co-culture conditions, rather than as 2D co-culture monolayers, highlighting the importance of 3D cultures. Finally, we examined the putative mechanisms that drive the differing potency displayed by EGFR inhibitors. In summary, our studies establish robust 3D culture models of human cells for HT assessment of tumor cell-selective agents. This methodology is anticipated to provide a useful tool for the study of biological differences within 2D and 3D culture conditions in HT format, and an important platform for novel anti-cancer drug discovery.  相似文献   

7.
Hepatocytes self-assemble in culture to form compacted spherical aggregates, or spheroids, that mimic the structure of the liver by forming tight junctions and bile canalicular channels. Hepatocyte spheroids thus resemble the liver to a great extent. However, liver tissue contains other cell types and has bile ducts and sinusoids formed by endothelial cells. Reproducing 3-D co-culture in vitro could provide a means to develop a more complex tissue-like structure. Stellate cells participate in revascularization after liver injury by excreting between hepatocytes a laminin trail that endothelial cells follow to form sinusoids. In this study we investigated co-culture of rat hepatocytes and a rat hepatic stellate cell line, HSC-T6. HSC-T6, which does not grow in serum-free spheroid medium, was able to grow under co-culture conditions. Using a three-dimensional cell tracking technique, the interactions of HSC-T6 and hepatocyte spheroids were visualized. The two cell types formed heterospheroids in culture, and HSC-T6 cell invasion into hepatocyte spheroids and subsequent retraction was observed. RT-PCR revealed that albumin and cytochrome P450 2B1/2 expression were better maintained in co-culture conditions. These three-dimensional heterospheroids provide an attractive system for in vitro studies of hepatocyte-stellate cell interactions.  相似文献   

8.
Summary Growth patterns of a number of human tumor cell lines that form three-dimensional structures of various architectures when cultured without carrier beads in a NASA rotary cell culture system are described and illustrated. The culture system, which was designed to mimic microgravity, maintained cells in suspension under very low-shear stress throughout culture. Spheroid (particulate) production occurred within a few hours after culture was started, and spheroids increased in size by cell division and fusion of small spheroids, usually stabilizing at a spheroid diameter of about 0.5 mm. Architecture of spheroids varied with cell type. Cellular interactions that occurred in spheroids resulted in conformation and shape changes of cells, and some cell lines produced complex, epithelial-like architectures. Expression of the cell adhesion molecules, CD44 and E cadherin, was upregulated in the three-dimensional constructs. Coculture of fibroblast spheroids with PC3 prostate cancer cells induced tenascin expression by the fibroblasts underlying the adherent prostate epithelial cells. Invasion of the fibroblast spheroids by the malignant epithelium was also demonstrated.  相似文献   

9.
Bridging the gap between two-dimensional cell cultures and complex in vivo tissues, three-dimensional cell culture models are of increasing interest in the fields of cell biology and pharmacology. However, present challenges hamper live cell imaging of three-dimensional cell cultures. These include (i) the stabilization of these structures under perfusion conditions, (ii) the recording of many z-planes at high spatio-temporal resolution, (iii) and the data analysis that ranges in complexity from whole specimens to single cells. Here, we addressed these issues for the time-lapse analysis of Ca2+ signaling in spheroids composed of human tongue-derived HTC-8 cells upon perfusion of gustatory substances. Live cell imaging setups for confocal and light sheet microscopy were developed that allow simple and robust spheroid stabilization and high-resolution microscopy with perfusion. Visualization of spheroids made of HTC-8 cells expressing the G-GECO fluorescent Ca2+ sensor revealed Ca2+ transients that showed similar kinetics but different amplitudes upon perfusion of bitter compounds Salicine and Saccharin. Dose-dependent responses to Saccharin required extracellular Ca2+. From the border towards the center of spheroids, compound-induced Ca2+ signals were progressively delayed and decreased in amplitude. Stimulation with ATP led to strong Ca2+ transients that were faster than those evoked by the bitter compounds and blockade of purinergic receptors with Suramin abutted the response to Saccharin, suggesting that ATP mediates a positive autocrine and paracrine feedback. Imaging of ATP-induced Ca2+ transients with light sheet microscopy allowed acquisition over a z-depth of 100 μm without losing spatial and temporal resolution. In summary, the presented approaches permit the study of fast cellular signaling in three-dimensional cultures upon compound perfusion.  相似文献   

10.

Background

Stromal fibroblasts are important determinants of tumor cell behavior. They act to condition the tumor microenvironment, influence tumor growth, support tumor angiogenesis and affect tumor metastasis. Heparan sulfate proteoglycans, present both on tumor and stromal cells, interact with a large number of ligands including growth factors, their receptors, and structural components of the extracellular matrix. Being ubiquitously expressed in the tumor microenvironment heparan sulfate proteoglycans are candidates for playing central roles in tumor-stroma interactions. The objective of this work was to investigate the role of heparan sulfate expressed by stromal fibroblasts in modulating the growth of tumor cells and in controlling the interstitial fluid pressure in a 3-D model.

Methodology/Principal Findings

We generated spheroids composed of fibroblasts alone, or composite spheroids, composed of fibroblasts and tumor cells. Here we show that stromal fibroblasts with a mutation in the heparan sulfate elongating enzyme Ext1 and thus a low heparan sulfate content, formed composite fibroblast/tumor cell spheroids with a significant lower interstitial fluid pressure than corresponding wild-type fibroblast/tumor cell composite spheroids. Furthermore, immunohistochemistry of composite spheroids revealed that the cells segregated, so that after 6 days in culture, the wild-type fibroblasts formed an inner core and the tumor cells an outer layer of cells. For composite spheroids containing Ext1-mutated fibroblasts this segregation was less obvious, indicating impaired cell migration. Analysis of tumor cells expressing the firefly luciferase gene revealed that the changes in tumor cell migration in mutant fibroblast/tumor cell composite spheroids coincided with a lower proliferation rate.

Conclusions/Significance

This is the first demonstration that stromal Ext1-levels modulate tumor cell proliferation and affect the interstitial fluid pressure in a 3-D spheroid model. Learning how structural changes in stromal heparan sulfate influence tumor cells is essential for our understanding how non-malignant cells of the tumor microenvironment influence tumor cell progression.  相似文献   

11.
We have previously demonstrated that loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts is a strong and independent predictor of poor clinical outcome in human breast cancer patients. However, the signaling mechanism(s) by which Cav-1 downregulation leads to this tumor-promoting microenvironment are not well understood. To address this issue, we performed an unbiased comparative proteomic analysis of wild-type (WT) and Cav-1-/- null mammary stromal fibroblasts (MSFs). Our results show that plasminogen activator inhibitor type 1 and type 2 (PAI-1 and PAI-2) expression is significantly increased in Cav-1-/- MSFs. To establish a direct cause-effect relationship, we next generated immortalized human fibroblast lines stably overexpressing either PAI-1 or PAI-2. Importantly, PAI-1/2(+) fibroblasts promote the growth of MDA-MB-231 tumors (a human breast cancer cell line) in a murine xenograft model, without any increases in angiogenesis. Similarly, PAI-1/2(+) fibroblasts stimulate experimental metastasis of MDA-MB-231 cells using an in vivo lung colonization assay. Further mechanistic studies revealed that fibroblasts overexpressing PAI-1 or PAI-2 display increased autophagy (“self-eating”) and are sufficient to induce mitochondrial biogenesis/activity in adjacent cancer cells, in co-culture experiments. In xenografts, PAI-1/2(+) fibroblasts significantly reduce the apoptosis of MDA-MB-231 tumor cells. The current study provides further support for the “Autophagic Tumor Stroma Model of Cancer” and identifies a novel “extracellular matrix”-based signaling mechanism, by which a loss of stromal Cav-1 generates a metastatic phenotype. Thus, the secretion and remodeling of extracellular matrix components (such as PAI-1/2) can directly regulate both (1) autophagy in stromal fibroblasts and (2) epithelial tumor cell mitochondrial metabolism.  相似文献   

12.
Tumor development is critically dependent on the formation of a supporting stroma consisting of neovasculature, inflammatory cells and activated fibroblasts. Activated fibroblasts present a heterogeneous cell population not only in regard to the expression of marker molecules but also to their origin and molecular signaling properties. The plasticity of this cell type is pointed out by the multiple transdifferentiation events that lead to the generation of activated fibroblasts which can arise from resting fibroblasts, epithelial and endothelial cells as well as from mesenchymal stem cells. Cellular in vitro and in vivo experiments have changed the perspective of fibroblasts from passive “bystanders” in the tumor microenvironment to that of important drivers of tumor progression. Here, we describe the multiple origins of fibroblast recruitment to the tumor tissue as well as the function of activated fibroblasts during tumor initiation, progression, metastasis and anti-VEGF resistance. The identification of markers present in activated fibroblasts as well as a better understanding how these cells influence other tumor compartments has led to the clinical development of anti-tumor therapies.  相似文献   

13.

Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease with very few effective treatments. The key effector cells in fibrosis are believed to be fibroblasts, which differentiate to a contractile myofibroblast phenotype with enhanced capacity to proliferate and produce extracellular matrix. The role of the lung epithelium in fibrosis is unclear. While there is evidence that the epithelium is disrupted in IPF, it is not known whether this is a cause or a result of the fibroblast pathology. We hypothesized that healthy epithelial cells are required to maintain normal lung homeostasis and can inhibit the activation and differentiation of lung fibroblasts to the myofibroblast phenotype. To investigate this hypothesis, we employed a novel co-culture model with primary human lung epithelial cells and fibroblasts to investigate whether epithelial cells inhibit myofibroblast differentiation.

Measurements and Main Results

In the presence of transforming growth factor (TGF)-β, fibroblasts co-cultured with epithelial cells expressed significantly less α-smooth muscle actin and collagen and showed marked reduction in cell migration, collagen gel contraction, and cell proliferation compared to fibroblasts grown without epithelial cells. Epithelial cells from non-matching tissue origins were capable of inhibiting TGF-β induced myofibroblast differentiation in lung, keloid and Graves’ orbital fibroblasts. TGF-β promoted production of prostaglandin (PG) E2 in lung epithelial cells, and a PGE2 neutralizing antibody blocked the protective effect of epithelial cell co-culture.

Conclusions

We provide the first direct experimental evidence that lung epithelial cells inhibit TGF-β induced myofibroblast differentiation and pro-fibrotic phenotypes in fibroblasts. This effect is not restricted by tissue origin, and is mediated, at least in part, by PGE2. Our data support the hypothesis that the epithelium plays a crucial role in maintaining lung homeostasis, and that damaged and/ or dysfunctional epithelium contributes to the development of fibrosis.  相似文献   

14.
Concentrations of extracellular Ca++ optimum for growth of cell types of mesodermal origin have been reported to be up to 100-fold higher than concentrations optimal for epidermal or other epithelial lining cells. In order to examine Ca++ requirements of epithelial v. fibroblastic cells derived from a common tissue source, prior to prolonged culture, freshly isolated mouse epidermal keratinocytes, hair follicle cells and dermal fibroblasts were plated at high density or at clonal density in medium ranging from 0.014 to 1.4 mM Ca++. Epithelial skin cells grew best at Ca++ levels below 0.1 mM while dermal fibroblasts grew best at a Ca++ concentration of 1.4 mM. the epithelial cell types exhibited marked morphologic changes in response to Ca++, while the fibroblasts did not. These results suggest that the variations in Ca++ response between lining epithelium and mesenchymal cells resulted from inherent differences in these cell types, but a mechanism for such differential effects has not yet been defined.  相似文献   

15.
In recent years, evidence has indicated that the tumor microenvironment (TME) plays a significant role in tumor progression. Fibroblasts represent an abundant cell population in the TME and produce several growth factors and cytokines. Fibroblasts generate a suitable niche for tumor cell survival and metastasis under the influence of interactions between fibroblasts and tumor cells. Investigating these interactions requires suitable experimental systems to understand the cross-talk involved. Most in vitro experimental systems use 2D cell culture and trans-well assays to study these interactions even though these paradigms poorly represent the tumor, in which direct cell-cell contacts in 3D spaces naturally occur. Investigating these interactions in vivo is of limited value due to problems regarding the challenges caused by the species-specificity of many molecules. Thus, it is essential to use in vitro models in which human fibroblasts are co-cultured with tumor cells to understand their interactions. Here, we developed a 3D co-culture model that enables direct cell-cell contacts between pancreatic, breast and or lung tumor cells and human fibroblasts/ or tumor-associated fibroblasts (TAFs). We found that co-culturing with fibroblasts/TAFs increases the proliferation in of several types of cancer cells. We also observed that co-culture induces differential expression of soluble factors in a cancer type-specific manner. Treatment with blocking antibodies against selected factors or their receptors resulted in the inhibition of cancer cell proliferation in the co-cultures. Using our co-culture model, we further revealed that TAFs can influence the response to therapeutic agents in vitro. We suggest that this model can be reliably used as a tool to investigate the interactions between a tumor and the TME.  相似文献   

16.
We have previously shown that fibroblast expression of α11β1 integrin stimulates A549 carcinoma cell growth in a xenograft tumor model. To understand the molecular mechanisms whereby a collagen receptor on fibroblast can regulate tumor growth we have used a 3D heterospheroid system composed of A549 tumor cells and fibroblasts without (α11+/+) or with a deletion (α11-/-) in integrin α11 gene. Our data show that α11-/-/A549 spheroids are larger than α11+/+/A549 spheroids, and that A549 cell number, cell migration and cell invasion in a collagen I gel are decreased in α11-/-/A549 spheroids. Gene expression profiling of differentially expressed genes in fibroblast/A549 spheroids identified CXCL5 as one molecule down-regulated in A549 cells in the absence of α11 on the fibroblasts. Blocking CXCL5 function with the CXCR2 inhibitor SB225002 reduced cell proliferation and cell migration of A549 cells within spheroids, demonstrating that the fibroblast integrin α11β1 in a 3D heterospheroid context affects carcinoma cell growth and invasion by stimulating autocrine secretion of CXCL5. We furthermore suggest that fibroblast α11β1 in fibroblast/A549 spheroids regulates interstitial fluid pressure by compacting the collagen matrix, in turn implying a role for stromal collagen receptors in regulating tensional hemostasis in tumors. In summary, blocking stromal α11β1 integrin function might thus be a stroma-targeted therapeutic strategy to increase the efficacy of chemotherapy.  相似文献   

17.
In vivo, normal tissues and organs have a three-dimensional structure and function in a three-dimensional environment. The standard two-dimensional cell culture conditions drastically differ from those in vivo. For this reason, three-dimensional cultures based on different variants of the extracellular matrix are more adequate for analyzing normal and tumor cell growth. Culturing a poorly differentiated hepatocellular carcinoma in a collagen gel yielded spheroids whose growth pattern shifted towards the epithelial phenotype. The shift was expressed in changes in the cytoskeleton, enhanced formation of extracellular matrix fibrils between cells, and formation of fibronectin fibrils on the outer surface of spheroids. Analysis of 25 genes reflecting the level of morphological and functional hepatocyte differentiation showed that the expression of the gene encoding the transforming growth factor TGFβ2 was suppressed the most significantly.  相似文献   

18.
Glandular tumors arising in epithelial cells comprise the majority of solid human cancers. Glands are supported by stroma, which is activated in the proximity of a tumor. Activated stroma is often characterized by the molecular expression of α-smooth muscle actin (α-SMA) within fibroblasts. However, the precise spatial and temporal evolution of chemical changes in fibroblasts upon epithelial tumor signaling is poorly understood. Here we report a label-free method to characterize fibroblast changes by using Fourier transform infrared spectroscopic imaging and comparing spectra with α-SMA expression in primary normal human fibroblasts. We recorded the fibroblast activation process by spectroscopic imaging using increasingly tissue-like conditions: 1), stimulation with the growth factor TGFβ1; 2), coculture with MCF-7 human breast cancerous epithelial cells in Transwell coculture; and 3), coculture with MCF-7 in three-dimensional cell culture. Finally, we compared the spectral signatures of stromal transformation with normal and malignant human breast tissue biopsies. The results indicate that this approach reveals temporally complex spectral changes and thus provides a richer assessment than simple molecular imaging based on α-SMA expression. Some changes are conserved across culture conditions and in human tissue, providing a label-free method to monitor stromal transformations.  相似文献   

19.
Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. IPF is now thought to result from wound-healing processes that, although initiated to protect the host from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly make important contributions, we focus here on the “pas de deux” (steps of two), or perhaps more appropriate to IPF pathogenesis, the “folie à deux” (madness of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these cell types in their “fibrosis of two”, including transforming growth factor-β, connective tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

20.
Ovarian cancer is the fifth leading cause of cancer related deaths in the United States1. Despite a positive initial response to therapies, 70 to 90 percent of women with ovarian cancer develop new metastases, and the recurrence is often fatal2. It is, therefore, necessary to understand how secondary metastases arise in order to develop better treatments for intermediate and late stage ovarian cancer. Ovarian cancer metastasis occurs when malignant cells detach from the primary tumor site and disseminate throughout the peritoneal cavity. The disseminated cells can form multicellular clusters, or spheroids, that will either remain unattached, or implant onto organs within the peritoneal cavity3 (Figure 1, Movie 1). All of the organs within the peritoneal cavity are lined with a single, continuous, layer of mesothelial cells4-6 (Figure 2). However, mesothelial cells are absent from underneath peritoneal tumor masses, as revealed by electron micrograph studies of excised human tumor tissue sections3,5-7 (Figure 2). This suggests that mesothelial cells are excluded from underneath the tumor mass by an unknown process. Previous in vitro experiments demonstrated that primary ovarian cancer cells attach more efficiently to extracellular matrix than to mesothelial cells8, and more recent studies showed that primary peritoneal mesothelial cells actually provide a barrier to ovarian cancer cell adhesion and invasion (as compared to adhesion and invasion on substrates that were not covered with mesothelial cells)9,10. This would suggest that mesothelial cells act as a barrier against ovarian cancer metastasis. The cellular and molecular mechanisms by which ovarian cancer cells breach this barrier, and exclude the mesothelium have, until recently, remained unknown. Here we describe the methodology for an in vitro assay that models the interaction between ovarian cancer cell spheroids and mesothelial cells in vivo (Figure 3, Movie 2). Our protocol was adapted from previously described methods for analyzing ovarian tumor cell interactions with mesothelial monolayers8-16, and was first described in a report showing that ovarian tumor cells utilize an integrin –dependent activation of myosin and traction force to promote the exclusion of the mesothelial cells from under a tumor spheroid17. This model takes advantage of time-lapse fluorescence microscopy to monitor the two cell populations in real time, providing spatial and temporal information on the interaction. The ovarian cancer cells express red fluorescent protein (RFP) while the mesothelial cells express green fluorescent protein (GFP). RFP-expressing ovarian cancer cell spheroids attach to the GFP-expressing mesothelial monolayer. The spheroids spread, invade, and force the mesothelial cells aside creating a hole in the monolayer. This hole is visualized as the negative space (black) in the GFP image. The area of the hole can then be measured to quantitatively analyze differences in clearance activity between control and experimental populations of ovarian cancer and/ or mesothelial cells. This assay requires only a small number of ovarian cancer cells (100 cells per spheroid X 20-30 spheroids per condition), so it is feasible to perform this assay using precious primary tumor cell samples. Furthermore, this assay can be easily adapted for high throughput screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号