首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dorsolateral prefrontal cortex (DLPFC) plays a key role in working memory. Evidence indicates that transcranial magnetic stimulation (TMS) over the DLPFC can interfere with working memory performance. Here we investigated for how long continuous theta-burst stimulation (cTBS) over the DLPFC decreases working memory performance and whether the effect of cTBS on performance depends on working memory load. Forty healthy young subjects received either cTBS over the left DLPFC or sham stimulation before performing a 2-, and 3-back working memory letter task. An additional 0-back condition served as a non-memory-related control, measuring general attention. cTBS over the left DLPFC significantly impaired 2-back working memory performance for about 15 min, whereas 3-back and 0-back performances were not significantly affected. Our results indicate that the effect of left DLPFC cTBS on working memory performance lasts for roughly 15 min and depends on working memory load.  相似文献   

2.
Theta burst stimulation (TBS) of the cerebellum, a potential therapy for neurological disease, can modulate corticospinal excitability via the dentato-thalamo-cortical pathway, but it is uncertain whether its effects are mediated via inhibitory or facilitatory networks. The aim of this study was to investigate the effects of 30Hz cerebellar TBS on the N100 waveform of the TMS-evoked potential (TEP), a marker of intracortical GABAB-mediated inhibition. 16 healthy participants (aged 18–30 years; 13 right handed and 3 left handed) received 30Hz intermittent TBS (iTBS), continuous TBS (cTBS) or sham stimulation over the right cerebellum, in three separate sessions. The first 8 participants received TBS at a stimulus intensity of 80% of active motor threshold (AMT), while the remainder received 90% of AMT. Motor evoked potentials (MEP) and TEP were recorded before and after each treatment, by stimulating the first dorsal interosseus area of the left motor cortex. Analysis of the 13 right handed participants showed that iTBS at 90% of AMT increased the N100 amplitude compared to sham and cTBS, without significantly altering MEP amplitude. cTBS at 80% of active motor threshold decreased the N100 amplitude and cTBS overall reduced resting MEP amplitude. The study demonstrates effects of 30Hz cerebellar TBS on inhibitory cortical networks that may be useful for treatment of neurological conditions associated with dysfunctional intracortical inhibition.  相似文献   

3.
Continuous theta burst stimulation (cTBS) applied over the primary motor cortex (M1) can alleviate pain although the neural basis of this effect remains largely unknown. Besides, the primary somatosensory cortex (S1) is thought to play a pivotal role in the sensori-discriminative aspects of pain perception but the analgesic effect of cTBS applied over S1 remains controversial. To investigate cTBS-induced analgesia we characterized, in two separate experiments, the effect of cTBS applied either over M1 or S1 on the event-related brain potentials (ERPs) and perception elicited by nociceptive (CO2 laser stimulation) and non-nociceptive (transcutaneous electrical stimulation) somatosensory stimuli. All stimuli were delivered to the ipsilateral and contralateral hand. We found that both cTBS applied over M1 and cTBS applied over S1 significantly reduced the percept elicited by nociceptive stimuli delivered to the contralateral hand as compared to similar stimulation of the ipsilateral hand. In contrast, cTBS did not modulate the perception of non-nociceptive stimuli. Surprisingly, this side-dependent analgesic effect of cTBS was not reflected in the amplitude modulation of nociceptive ERPs. Indeed, both nociceptive (N160, N240 and P360 waves) and late-latency non-nociceptive (N140 and P200 waves) ERPs elicited by stimulation of the contralateral and ipsilateral hands were similarly reduced after cTBS, suggesting an unspecific effect, possibly due to habituation or reduced alertness. In conclusion, cTBS applied over M1 and S1 reduces similarly the perception of nociceptive inputs originating from the contralateral hand, but this analgesic effect is not reflected in the magnitude of nociceptive ERPs.  相似文献   

4.
Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter-individual variability which has been partially attributed to the val66met polymorphism in the brain-derived neurotrophic factor (BDNF) gene. Here we used theta burst stimulation (TBS) to examine whether the BDNF val66met genotype can be used to predict the expression of TBS-induced homeostatic metaplasticity in human M1HAND. TBS is a patterned rTMS protocol with intermittent TBS (iTBS) usually inducing a lasting increase and continuous TBS (cTBS) a lasting decrease in corticospinal excitability. In three separate sessions, healthy val66met (n = 12) and val66val (n = 17) carriers received neuronavigated cTBS followed by cTBS (n = 27), cTBS followed by iTBS (n = 29), and iTBS followed by iTBS (n = 28). Participants and examiner were blinded to the genotype at the time of examination. As expected, the first TBS intervention induced a decrease (cTBS) and increase (iTBS) in corticospinal excitability, respectively, at the same time priming the after effects caused by the second TBS intervention in a homeostatic fashion. Critically, val66met carriers and val66val carriers showed very similar response patterns to cTBS and iTBS regardless of the order of TBS interventions. Since none of the observed TBS effects was modulated by the BDNF val66met polymorphism, our results do not support the notion that the BDNF val66met genotype is a major player with regard to TBS-induced plasticity and metaplasticity in the human M1HAND.  相似文献   

5.

Background

Recently, it was shown that the highly variable after-effect of continuous theta-burst stimulation (cTBS) of the primary motor cortex (M1) can be predicted by the latency of motor-evoked potentials (MEPs) recorded before cTBS. This suggests that at least part of this inter-individual variability is driven by differences in the neuronal populations preferentially activated by transcranial magnetic stimulation (TMS).

Methods

Here, we recorded MEPs, TMS-evoked brain potentials (TEPs) and somatosensory-evoked potentials (SEPs) to investigate the effects of cTBS delivered over the primary sensorimotor cortex on both the ipsilateral and contralateral M1, and the ipsilateral and contralateral primary somatosensory cortex (S1).

Results

We confirm that the after-effects of cTBS can be predicted by the latency of MEPs recorded before cTBS. Over the hemisphere onto which cTBS was delivered, short-latency MEPs at baseline were associated with an increase of MEP magnitude (i.e. an excitatory effect of cTBS) whereas late-latency MEPs were associated with reduced MEPs (i.e. an inhibitory effect of cTBS). This relationship was reversed over the contralateral hemisphere, indicating opposite effects of cTBS on the responsiveness of the ipsilateral and contralateral M1. Baseline MEP latencies also predicted changes in the magnitude of the N100 wave of TEPs elicited by stimulation of the ipsilateral and contralateral hemisphere, indicating that this TEP component is specifically dependent on the state of M1. Finally, there was a reverse relationship between MEP latency and the effects of cTBS on the SEP waveforms (50–130 ms), indicating that after-effects of cTBS on S1 are opposite to those on M1.

Conclusion

Taken together, our results confirm that the variable after-effects of cTBS can be explained by differences in the neuronal populations activated by TMS. Furthermore, our results show that this variability also determines remote effects of cTBS in S1 and the contralateral hemisphere, compatible with inter-hemispheric and sensorimotor interactions.  相似文献   

6.
Transcranial magnetic stimulation (TMS) has been shown to significantly improve language function in patients with non-fluent aphasia1. In this experiment, we demonstrate the administration of low-frequency repetitive TMS (rTMS) to an optimal stimulation site in the right hemisphere in patients with chronic non-fluent aphasia. A battery of standardized language measures is administered in order to assess baseline performance. Patients are subsequently randomized to either receive real rTMS or initial sham stimulation. Patients in the real stimulation undergo a site-finding phase, comprised of a series of six rTMS sessions administered over five days; stimulation is delivered to a different site in the right frontal lobe during each of these sessions. Each site-finding session consists of 600 pulses of 1 Hz rTMS, preceded and followed by a picture-naming task. By comparing the degree of transient change in naming ability elicited by stimulation of candidate sites, we are able to locate the area of optimal response for each individual patient. We then administer rTMS to this site during the treatment phase. During treatment, patients undergo a total of ten days of stimulation over the span of two weeks; each session is comprised of 20 min of 1 Hz rTMS delivered at 90% resting motor threshold. Stimulation is paired with an fMRI-naming task on the first and last days of treatment. After the treatment phase is complete, the language battery obtained at baseline is repeated two and six months following stimulation in order to identify rTMS-induced changes in performance. The fMRI-naming task is also repeated two and six months following treatment. Patients who are randomized to the sham arm of the study undergo sham site-finding, sham treatment, fMRI-naming studies, and repeat language testing two months after completing sham treatment. Sham patients then cross over into the real stimulation arm, completing real site-finding, real treatment, fMRI, and two- and six-month post-stimulation language testing.  相似文献   

7.
Premji A  Rai N  Nelson A 《PloS one》2011,6(5):e20023
In non-human primates, Brodmann's area 5 (BA 5) has direct connectivity with primary motor cortex (M1), is largely dedicated to the representation of the hand and may have evolved with the ability to perform skilled hand movement. Less is known about human BA 5 and its interaction with M1 neural circuits related to hand control. The present study examines the influence of BA 5 on excitatory and inhibitory neural circuitry within M1 bilaterally before and after continuous (cTBS), intermittent (iTBS), and sham theta-burst stimulation (sham TBS) over left hemisphere BA 5. Using single and paired-pulse TMS, measurements of motor evoked potentials (MEPs), short interval intracortical inhibition (SICI), and intracortical facilitation (ICF) were quantified for the representation of the first dorsal interosseous muscle. Results indicate that cTBS over BA 5 influences M1 excitability such that MEP amplitudes are increased bilaterally for up to one hour. ITBS over BA 5 results in an increase in MEP amplitude contralateral to stimulation with a delayed onset that persists up to one hour. SICI and ICF were unaltered following TBS over BA 5. Similarly, F-wave amplitude and latency were unaltered following cTBS over BA 5. The data suggest that BA 5 alters M1 output directed to the hand by influencing corticospinal neurons and not interneurons that mediate SICI or ICF circuitry. Targeting BA 5 via cTBS and iTBS is a novel mechanism to powerfully modulate activity within M1 and may provide an avenue for investigating hand control in healthy populations and modifying impaired hand function in clinical populations.  相似文献   

8.
In the antisaccade task, subjects are requested to suppress a reflexive saccade towards a visual target and to perform a saccade towards the opposite side. In addition, in order to reproduce an accurate saccadic amplitude, the visual saccade vector (i.e., the distance between a central fixation point and the peripheral target) must be exactly inverted from one visual hemifield to the other. Results from recent studies using a correlational approach (i.e., fMRI, MEG) suggest that not only the posterior parietal cortex (PPC) but also the frontal eye field (FEF) might play an important role in such a visual vector inversion process. In order to assess whether the FEF contributes to visual vector inversion, we applied an interference approach with continuous theta burst stimulation (cTBS) during a memory-guided antisaccade task. In 10 healthy subjects, one train of cTBS was applied over the right FEF prior to a memory-guided antisaccade task. In comparison to the performance without stimulation or with sham stimulation, cTBS over the right FEF induced a hypometric gain for rightward but not leftward antisaccades. These results obtained with an interference approach confirm that the FEF is also involved in the process of visual vector inversion.  相似文献   

9.
Transcranial direct current stimulation (tDCS) studies often use one anode to increase cortical excitability in one hemisphere. However, mental processes may involve cortical regions in both hemispheres. This study’s aim was to assess the safety and possible effects on affect and working memory of tDCS using two anodes for bifrontal stimulation. A group of healthy subjects participated in two bifrontal tDCS sessions on two different days, one for real and the other for sham stimulation. They performed a working memory task and reported their affect immediately before and after each tDCS session. Relative to sham, real bifrontal stimulation did not induce significant adverse effects, reduced decrement in vigor-activity during the study session, and did not improve working memory. These preliminary findings suggest that bifrontal anodal stimulation is feasible and safe and may reduce task-related fatigue in healthy participants. Its effects on neuropsychiatric patients deserve further study.  相似文献   

10.

Background

The somatosensory temporal discrimination threshold (STDT) measures the ability to perceive two stimuli as being sequential. Precisely how the single cerebral structures contribute in controlling the STDT is partially known and no information is available about whether STDT can be modulated by plasticity-inducing protocols.

Methodology/Principal Findings

To investigate how the cortical and cerebellar areas contribute to the STDT we used transcranial magnetic stimulation and a neuronavigation system. We enrolled 18 healthy volunteers and 10 of these completed all the experimental sessions, including the control experiments. STDT was measured on the left hand before and after applying continuous theta-burst stimulation (cTBS) on the right primary somatosensory area (S1), pre-supplementary motor area (pre-SMA), right dorsolateral prefrontal cortex (DLPFC) and left cerebellar hemisphere. We then investigated whether intermittent theta-burst stimulation (iTBS) on the right S1 improved the STDT. After right S1 cTBS, STDT values increased whereas after iTBS to the same cortical site they decreased. cTBS over the DLPFC and left lateral cerebellum left the STDT statistically unchanged. cTBS over the pre-SMA also left the STDT statistically unchanged, but it increased the number of errors subjects made in distinguishing trials testing a single stimulus and those testing paired stimuli.

Conclusions/Significance

Our findings obtained by applying TBS to the cortical areas involved in processing sensory discrimination show that the STDT is encoded in S1, possibly depends on intrinsic S1 neural circuit properties, and can be modulated by plasticity-inducing TBS protocols delivered over S1. Our findings, giving further insight into mechanisms involved in somatosensory temporal discrimination, help interpret STDT abnormalities in movement disorders including dystonia and Parkinson''s disease.  相似文献   

11.
Human movement sense relies on both somatosensory feedback and on knowledge of the motor commands used to produce the movement. We have induced a movement illusion using repetitive transcranial magnetic stimulation over primary motor cortex and dorsal premotor cortex in the absence of limb movement and its associated somatosensory feedback. Afferent and efferent neural signalling was abolished in the arm with ischemic nerve block, and in the leg with spinal nerve block. Movement sensation was assessed following trains of high-frequency repetitive transcranial magnetic stimulation applied over primary motor cortex, dorsal premotor cortex, and a control area (posterior parietal cortex). Magnetic stimulation over primary motor cortex and dorsal premotor cortex produced a movement sensation that was significantly greater than stimulation over the control region. Movement sensation after dorsal premotor cortex stimulation was less affected by sensory and motor deprivation than was primary motor cortex stimulation. We propose that repetitive transcranial magnetic stimulation over dorsal premotor cortex produces a corollary discharge that is perceived as movement.  相似文献   

12.
Transcranial magnetic theta burst stimulation (TBS) differs from other high-frequency rTMS protocols because it induces plastic changes up to an hour despite lower stimulus intensity and shorter duration of stimulation. However, the effects of TBS on neuronal oscillations remain unclear. In this study, we used electroencephalography (EEG) to investigate changes of neuronal oscillations after continuous TBS (cTBS), the protocol that emulates long-term depression (LTD) form of synaptic plasticity. We randomly divided 26 healthy humans into two groups receiving either Active or Sham cTBS as control over the left primary motor cortex (M1). Post-cTBS aftereffects were assessed with behavioural measurements at rest using motor evoked potentials (MEPs) and at active state during the execution of a choice reaction time (RT) task in combination with continuous electrophysiological recordings. The cTBS-induced EEG oscillations were assessed using event-related power (ERPow), which reflected regional oscillatory activity of neural assemblies of θ (4-7.5 Hz), low α (8-9.5 Hz), μ (10-12.5 Hz), low β (13-19.5 Hz), and high β (20-30 Hz) brain rhythms. Results revealed 20-min suppression of MEPs and at least 30-min increase of ERPow modulation, suggesting that besides MEPs, EEG has the potential to provide an accurate cortical readout to assess cortical excitability and to investigate the interference of cortical oscillations in the human brain post-cTBS. We also observed a predominant modulation of β frequency band, supporting the hypothesis that cTBS acts more on cortical level. Theta oscillations were also modulated during rest implying the involvement of independent cortical theta generators over the motor network post cTBS. This work provided more insights into the underlying mechanisms of cTBS, providing a possible link between synchronised neural oscillations and LTD in humans.  相似文献   

13.
BackgroundThe effects produced by transcranial direct current stimulation (tDCS) applied to the motor system have been widely studied in the past, chiefly focused on primary motor cortex (M1) excitability. However, the effects on functional tasks are less well documented.ObjectiveThis study aims to evaluate the effect of tDCS-M1 on goal-oriented actions (i.e., arm-reaching movements; ARM), in a reaction-time protocol.Methods13 healthy subjects executed dominant ARM as fast as possible to one of two targets in front of them while surface EMG was recorded. Participants performed three different sessions. In each session they first executed ARM (Pre), then received tDCS, and finally executed Post, similar to Pre. Subjects received three different types of tDCS, one per session: In one session the anode was on right-M1 (AR), and the cathode on the left-M1 (CL), thus termed AR-CL; AL-CR reversed the montage; and Sham session was applied likewise. Real stimulation was 1mA-10min while subjects at rest. Three different variables and their coefficients of variation (CV) were analyzed: Premotor times (PMT), reaction-times (RT) and movement-times (MT).Resultstriceps-PMT were significantly increased at Post-Sham, suggesting fatigue. Results obtained with real tDCS were not different depending on the montage used, in both cases PMT were significantly reduced in all recorded muscles. RT and MT did not change for real or sham stimulation. RT-CV and PMT-CV were reduced after all stimulation protocols.ConclusiontDCS reduces premotor time and fatigability during the execution of fast motor tasks. Possible underlying mechanisms are discussed.  相似文献   

14.
We assessed the ability of two algorithms to predict hand kinematics from neural activity as a function of the amount of data used to determine the algorithm parameters. Using chronically implanted intracortical arrays, single- and multineuron discharge was recorded during trained step tracking and slow continuous tracking tasks in macaque monkeys. The effect of increasing the amount of data used to build a neural decoding model on the ability of that model to predict hand kinematics accurately was examined. We evaluated how well a maximum-likelihood model classified discrete reaching directions and how well a linear filter model reconstructed continuous hand positions over time within and across days. For each of these two models we asked two questions: (1) How does classification performance change as the amount of data the model is built upon increases? (2) How does varying the time interval between the data used to build the model and the data used to test the model affect reconstruction? Less than 1 min of data for the discrete task (8 to 13 neurons) and less than 3 min (8 to 18 neurons) for the continuous task were required to build optimal models. Optimal performance was defined by a cost function we derived that reflects both the ability of the model to predict kinematics accurately and the cost of taking more time to build such models. For both the maximum-likelihood classifier and the linear filter model, increasing the duration between the time of building and testing the model within a day did not cause any significant trend of degradation or improvement in performance. Linear filters built on one day and tested on neural data on a subsequent day generated error-measure distributions that were not significantly different from those generated when the linear filters were tested on neural data from the initial day (p<0.05, Kolmogorov-Smirnov test). These data show that only a small amount of data from a limited number of cortical neurons appears to be necessary to construct robust models to predict kinematic parameters for the subsequent hours. Motor-control signals derived from neurons in motor cortex can be reliably acquired for use in neural prosthetic devices. Adequate decoding models can be built rapidly from small numbers of cells and maintained with daily calibration sessions.  相似文献   

15.
Debarnot U  Clerget E  Olivier E 《PloS one》2011,6(10):e26717
Recently, it has been suggested that the primary motor cortex (M1) plays a critical role in implementing the fast and transient post-training phase of motor skill consolidation, known to yield an early boost in performance. Whether a comparable early boost in performance occurs following motor imagery (MIM) training is still unknown. To address this issue, two groups of subjects learned a finger tapping sequence either by MIM or physical practice (PP). In both groups, performance increased significantly in the post-training phase when compared with the pre-training phase and further increased after a 30 min resting period, indicating that both MIM and PP trainings were equally efficient and induced an early boost in motor performance. This conclusion was corroborated by the results of an additional control group. In a second experiment, we then investigated the causal role of M1 in implementing the early boost process resulting from MIM training. To do so, we inhibited M1 by applying a continuous theta-burst stimulation (cTBS) in healthy volunteers just after they learnt, by MIM, the same finger-tapping task as in Experiment #1. As a control, cTBS was applied over the vertex of subjects who underwent the same experiment. We found that cTBS applied over M1 selectively abolished the early boost process subsequent to MIM training. Altogether, the present study provides evidence that MIM practice induces an early boost in performance and demonstrates that M1 is causally involved in this process. These findings further divulge some degree of behavioral and neuronal similitude between MIM and PP.  相似文献   

16.
A valid sham control is important for determining the efficacy and effectiveness of repetitive transcranial magnetic stimulation (rTMS) as an experimental and clinical tool. Given the manner in which rTMS is applied, separately or in combination with self-regulatory approaches, and its intended impact on brain states, a valid sham control of this type may well serve as a meaningful control for biofeedback studies, where efforts to develop a credible control have often been less than ideal. This study examined the effectiveness of focal electrical stimulation of the frontalis muscle as a sham technique for blinding participants to high-frequency rTMS over the dorso-lateral prefrontal cortex (DLPFC) at durations, intensities, and schedules of stimulation similar to many clinical applications. In this within-subjects single blind design, 19 participants made guesses immediately after receiving 54 counterbalanced rTMS sessions (sham, 10 Hz, 20 Hz); 7 (13 %) of the guesses were made for sham, 31 (57 %) were made for 10 Hz, and 16 (30 %) were made for 20 Hz. Participants correctly guessed the sham condition 6 % (CI 1, 32 %) of the time, which is less than the odds of chance (i.e., of guessing at random, 33 %); correctly guessed the 10 Hz condition 66 % (CI 43, 84 %) of the time, which was greater than chance; and correctly guessed the 20 Hz condition 41 % (CI 21, 65 %) of the time, which was no different than chance. Focal electrical stimulation therefore can be an effective sham control for high-frequency rTMS of the DLPFC, as well as for active biofeedback interventions. Participants were unaware that electrical stimulation was, in fact, sham rTMS.  相似文献   

17.
Integrating auditory and motor information often requires precise timing as in speech and music. In humans, the position of the ventral premotor cortex (PMv) in the dorsal auditory stream renders this area a node for auditory-motor integration. Yet, it remains unknown whether the PMv is critical for auditory-motor timing and which activity increases help to preserve task performance following its disruption. 16 healthy volunteers participated in two sessions with fMRI measured at baseline and following rTMS (rTMS) of either the left PMv or a control region. Subjects synchronized left or right finger tapping to sub-second beat rates of auditory rhythms in the experimental task, and produced self-paced tapping during spectrally matched auditory stimuli in the control task. Left PMv rTMS impaired auditory-motor synchronization accuracy in the first sub-block following stimulation (p<0.01, Bonferroni corrected), but spared motor timing and attention to task. Task-related activity increased in the homologue right PMv, but did not predict the behavioral effect of rTMS. In contrast, anterior midline cerebellum revealed most pronounced activity increase in less impaired subjects. The present findings suggest a critical role of the left PMv in feed-forward computations enabling accurate auditory-motor timing, which can be compensated by activity modulations in the cerebellum, but not in the homologue region contralateral to stimulation.  相似文献   

18.
In the isolated, blood-perfused canine right atrium, which was pretreated with propranolol, negative chronotropic and inotropic responses were evoked by stimulation of the intramural parasympathetic nerve fibers or by intra-arterial infusion of acetylcholine (ACh). Successive cholinergic interventions were applied; first, a conditioning intervention for 2 min was given, then this was followed by a test intervention for 4 min. The two interventions were separated by a rest period that varied from 15 to 240 s. The cardiac responses to the conditioning parasympathetic nerve stimulation quickly reached maximum levels, and then they "faded" or progressively diminished back toward the control level. The inotropic responses to the conditioning infusion of ACh (1 microgram/min) faded slightly but the chronotropic response did not. After the rest period, the test nerve stimulation evoked responses that also gradually faded with time. The maximal amplitude of the responses to the test stimuli were less than those to the conditioning stimuli. This reduction in the maximal amplitude of the cardiac responses to the test stimuli was more pronounced with high frequency stimulation (30 Hz) than with low frequency stimulation (5 Hz). The decrement was also more pronounced the shorter the rest period, and it was greater at earlier times after beginning the stimulation. Conversely, the maximal cardiac responses to test infusions of ACh were not appreciably less than the responses to the conditioning infusions. We conclude, therefore, that the diminution of the cardiac responses to the second test stimulation of the parasympathetic nerve fibers was mainly ascribable to a prejunctional rather than to a postjunctional mechanism.  相似文献   

19.
Dystonia is characterized by abnormal posturing due to sustained muscle contraction, which leads to pain and significant disability. New therapeutic targets are needed in this disorder. The objective of this randomized, sham-controlled, blinded exploratory study is to identify a specific motor system target for non-invasive neuromodulation and to evaluate this target in terms of safety and tolerability in the cervical dystonia (CD) population. Eight CD subjects were given 15-minute sessions of low-frequency (0.2 Hz) repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex (MC), dorsal premotor cortex (dPM), supplementary motor area (SMA), anterior cingulate cortex (ACC) and a sham condition with each session separated by at least two days. The Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) score was rated in a blinded fashion immediately pre- and post-intervention. Secondary outcomes included physiology and tolerability ratings. The mean change in TWSTRS severity score by site was 0.25 ± 1.7 (ACC), -2.9 ± 3.4 (dPM), -3.0 ± 4.8 (MC), -0.5 ± 1.1 (SHAM), and -1.5 ± 3.2 (SMA) with negative numbers indicating improvement in symptom control. TWSTRS scores decreased from Session 1 (15.1 ± 5.1) to Session 5 (11.0 ± 7.6). The treatment was tolerable and safe. Physiology data were acquired on 6 of 8 subjects and showed no change over time. These results suggest rTMS can modulate CD symptoms. Both dPM and MC are areas to be targeted in further rTMS studies. The improvement in TWSTRS scores over time with multiple rTMS sessions deserves further evaluation.

Trial Registration

ClinicalTrials.gov NCT01859247  相似文献   

20.
ABSTRACT: BACKGROUND: Compensation of brain injury in multiple sclerosis (MS) may in part work through mechanisms involving neuronal plasticity on local and interregional scales. Mechanisms limiting excessive neuronal activity may have special significance for retention and (re-)acquisition of lost motor skills in brain injury. However, previous neurophysiological studies of plasticity in MS have investigated only excitability enhancing plasticity and results from neuroimaging are ambiguous. Thus, the aim of this study was to probe long-term depression-like central motor plasticity utilizing continuous theta-burst stimulation (cTBS), a non-invasive brain stimulation protocol. Because cTBS also may trigger behavioral effects through local interference with neuronal circuits, this approach also permitted investigating the functional role of the primary motor cortex (M1) in force control in patients with MS. METHODS: We used cTBS and force recordings to examine long-term depression-like central motor plasticity and behavioral consequences of a M1 lesion in 14 patients with stable mild-to-moderate MS (median EDSS 1.5, range 0 to 3.5) and 14 age-matched healthy controls. cTBS consisted of bursts (50 Hz) of three subthreshold biphasic magnetic stimuli repeated at 5 Hz for 40 s over the hand area of the left M1. Corticospinal excitability was probed via motor-evoked potentials (MEP) in the abductor pollicis brevis muscle over M1 before and after cTBS. Force production performance was assessed in an isometric right thumb abduction task by recording the number of hits into a predefined force window. RESULTS: cTBS reduced MEP amplitudes in the contralateral abductor pollicis brevis muscle to a comparable extent in control subjects (69 +/- 22 % of baseline amplitude, p < 0.001) and in MS patients (69 +/- 18 %, p < 0.001). In contrast, post-cTBS force production performance was only impaired in controls (2.2 +/- 2.8, p = 0.011), but not in MS patients (2.0 +/- 4.4, p = 0.108). The decline in force production performance following cTBS correlated with corticomuscular latencies (CML) in MS patients, but did not correlate with MEP amplitude reduction in patients or controls. CONCLUSIONS: Long-term depression-like plasticity remains largely intact in mild-to-moderate MS. Increasing brain injury may render the neuronal networks less responsive toward lesion-induction by cTBS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号