共查询到16条相似文献,搜索用时 0 毫秒
1.
Vinay A. Patil Jennifer L. Fox Vishal M. Gohil Dennis R. Winge Miriam L. Greenberg 《The Journal of biological chemistry》2013,288(3):1696-1705
Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes, where it is synthesized locally and plays a critical role in mitochondrial bioenergetic functions. The importance of CL in human health is underscored by the observation that perturbation of CL biosynthesis causes the severe genetic disorder Barth syndrome. To fully understand the cellular response to the loss of CL, we carried out genome-wide expression profiling of the yeast CL mutant crd1Δ. Our results show that the loss of CL in this mutant leads to increased expression of iron uptake genes accompanied by elevated levels of mitochondrial iron and increased sensitivity to iron and hydrogen peroxide. Previous studies have shown that increased mitochondrial iron levels result from perturbations in iron-sulfur (Fe-S) cluster biogenesis. Consistent with an Fe-S defect, deletion of ISU1, one of two ISU genes that encode the mitochondrial Fe-S scaffolding protein essential for the synthesis of Fe-S clusters, led to synthetic growth defects with the crd1Δ mutant. We further show that crd1Δ cells have reduced activities of mitochondrial Fe-S enzymes (aconitase, succinate dehydrogenase, and ubiquinol-cytochrome c oxidoreductase), as well as cytosolic Fe-S enzymes (sulfite reductase and isopropylmalate isomerase). Increased expression of ATM1 or YAP1 did not rescue the Fe-S defects in crd1Δ. These findings show for the first time that CL is required for Fe-S biogenesis to maintain mitochondrial and cellular iron homeostasis. 相似文献
2.
Alok Pandey Jayashree Pain Arnab K. Ghosh Andrew Dancis Debkumar Pain 《The Journal of biological chemistry》2015,290(1):640-657
Iron-sulfur (Fe-S) clusters are essential cofactors, and mitochondria contain several Fe-S proteins, including the [4Fe-4S] protein aconitase and the [2Fe-2S] protein ferredoxin. Fe-S cluster assembly of these proteins occurs within mitochondria. Although considerable data exist for yeast mitochondria, this biosynthetic process has never been directly demonstrated in mammalian mitochondria. Using [35S]cysteine as the source of sulfur, here we show that mitochondria isolated from Cath.A-derived cells, a murine neuronal cell line, can synthesize and insert new Fe-35S clusters into aconitase and ferredoxins. The process requires GTP, NADH, ATP, and iron, and hydrolysis of both GTP and ATP is necessary. Importantly, we have identified the 35S-labeled persulfide on the NFS1 cysteine desulfurase as a genuine intermediate en route to Fe-S cluster synthesis. In physiological settings, the persulfide sulfur is released from NFS1 and transferred to a scaffold protein, where it combines with iron to form an Fe-S cluster intermediate. We found that the release of persulfide sulfur from NFS1 requires iron, showing that the use of iron and sulfur for the synthesis of Fe-S cluster intermediates is a highly coordinated process. The release of persulfide sulfur also requires GTP and NADH, probably mediated by a GTPase and a reductase, respectively. ATP, a cofactor for a multifunctional Hsp70 chaperone, is not required at this step. The experimental system described here may help to define the biochemical basis of diseases that are associated with impaired Fe-S cluster biogenesis in mitochondria, such as Friedreich ataxia. 相似文献
3.
4.
Nutritional iron acquisition by bacteria is well described, but almost nothing is known about bacterial iron export even though it is likely to be an important homeostatic mechanism. Here, we show that Bradyrhizobium japonicum MbfA (Blr7895) is an inner membrane protein expressed in cells specifically under high iron conditions. MbfA contains an N-terminal ferritin-like domain (FLD) and a C-terminal domain homologous to the eukaryotic vacuolar membrane Fe2+/Mn2+ transporter CCC1. An mbfA deletion mutant is severely defective in iron export activity, contains >2-fold more intracellular iron than the parent strain, and displays an aberrant iron-dependent gene expression phenotype. B. japonicum is highly resistant to iron and H2O2 stresses, and MbfA contributes substantially to this as determined by phenotypes of the mbfA mutant strain. The N-terminal FLD was localized to the cytoplasmic side of the inner membrane. Substitution mutations in the putative iron-binding amino acid residues E20A and E107A within the N-terminal FLD abrogate iron export activity and stress response function. Purified soluble FLD oxidizes ferrous iron (Fe2+) to incorporate ferric iron (Fe3+) in a 2:1 iron:protein ratio, which does not occur in the E20A/E107A mutant. The FLD fragment is a dimer in solution, implying that the MbfA exporter functions as a dimer. MbfA belongs to a protein family found in numerous prokaryotic genera. The findings strongly suggest that iron export plays an important role in bacterial iron homeostasis. 相似文献
5.
Anil K. Sharma Leif J. Pallesen Robert J. Spang William E. Walden 《The Journal of biological chemistry》2010,285(35):26745-26751
FeS cluster biogenesis is an essential process in virtually all forms of life. Complex protein machineries that are conserved from bacteria through higher eukaryotes facilitate assembly of the FeS cofactor in proteins. In the last several years, significant strides have been made in our understanding of FeS cluster assembly and the functional overlap of this process with cellular iron homeostasis. This minireview summarizes the present understanding of the cytosolic iron-sulfur cluster assembly (CIA) system in eukaryotes, with a focus on information gained from studies in budding yeast and mammalian systems. 相似文献
6.
Ningning Zhao Junwei Gao Caroline A. Enns Mitchell D. Knutson 《The Journal of biological chemistry》2010,285(42):32141-32150
ZIP14 is a transmembrane metal ion transporter that is abundantly expressed in the liver, heart, and pancreas. Previous studies of HEK 293 cells and the hepatocyte cell lines AML12 and HepG2 established that ZIP14 mediates the uptake of non-transferrin-bound iron, a form of iron that appears in the plasma during pathologic iron overload. In this study we investigated the role of ZIP14 in the cellular assimilation of iron from transferrin, the circulating plasma protein that normally delivers iron to cells by receptor-mediated endocytosis. We also determined the subcellular localization of ZIP14 in HepG2 cells. We found that overexpression of ZIP14 in HEK 293T cells increased the assimilation of iron from transferrin without increasing levels of transferrin receptor 1 or the uptake of transferrin. To allow for highly specific and sensitive detection of endogenous ZIP14 in HepG2 cells, we used a targeted knock-in approach to generate a cell line expressing a FLAG-tagged ZIP14 allele. Confocal microscopic analysis of these cells detected ZIP14 at the plasma membrane and in endosomes containing internalized transferrin. HepG2 cells in which endogenous ZIP14 was suppressed by siRNA assimilated 50% less iron from transferrin compared with controls. The uptake of transferrin, however, was unaffected. We also found that ZIP14 can mediate the transport of iron at pH 6.5, the pH at which iron dissociates from transferrin within the endosome. These results suggest that endosomal ZIP14 participates in the cellular assimilation of iron from transferrin, thus identifying a potentially new role for ZIP14 in iron metabolism. 相似文献
7.
8.
9.
10.
11.
12.
Philpott CC 《The Journal of biological chemistry》2012,287(17):13518-13523
Eukaryotic cells contain hundreds of metalloproteins, and ensuring that each protein receives the correct metal ion is a critical task for cells. Recent work in budding yeast and mammalian cells has uncovered a system of iron delivery operating in the cytosolic compartment that involves monothiol glutaredoxins, which bind iron in the form of iron-sulfur clusters, and poly(rC)-binding proteins, which bind Fe(II) directly. In yeast cells, cytosolic monothiol glutaredoxins are required for the formation of heme and iron-sulfur clusters and the metallation of some non-heme iron enzymes. Poly(rC)-binding proteins can act as iron chaperones, delivering iron to target non-heme enzymes through direct protein-protein interactions. Although the molecular details have yet to be explored, these proteins, acting independently or together, may represent the basic cellular machinery for intracellular iron delivery. 相似文献
13.
14.
Natalia Gabrielli José Ayté Elena Hidalgo 《The Journal of biological chemistry》2012,287(51):43042-43051
Friedreich ataxia is a genetic disease caused by deficiencies in frataxin. This protein has homologs not only in higher eukaryotes but also in bacteria, fungi, and plants. The function of this protein is still controversial. We have identified a frataxin homolog in fission yeast, and we have analyzed whether its depletion leads to any of the phenotypes observed in other organisms. Cells deleted in pfh1 are sensitive to growth under aerobic conditions, display increased levels of total iron, hallmarks of oxidative stress such as protein carbonylation, decreased aconitase activity, and lower levels of oxygen consumption compared with wild-type cells. This mitochondrial protein seems to be important for iron and/or reactive oxygen species homeostasis. We have analyzed the proteome of cells devoid of Pfh1, and we determined that gene products up- and down-regulated upon iron depletion in wild-type cells are constitutively misregulated in this mutant. Because of the particular signaling pathway components governing the iron starvation response in fission yeast, our experiments suggest that cells lacking Pfh1 display a decrease of cytosolic available iron that triggers activation of Grx4, the common regulator of the iron starvation gene expression program. Our Schizosaccharomyces pombe Δpfh1 strain constitutes a new and useful model system to study Friedreich ataxia. 相似文献
15.
Lakhal S Schödel J Townsend AR Pugh CW Ratcliffe PJ Mole DR 《The Journal of biological chemistry》2011,286(6):4090-4097
Hepcidin is a liver-derived hormone with a key role in iron homeostasis. In addition to iron, it is regulated by inflammation and hypoxia, although mechanisms of hypoxic regulation remain unclear. In hepatocytes, hepcidin is induced by bone morphogenetic proteins (BMPs) through a receptor complex requiring hemojuvelin (HJV) as a co-receptor. Type II transmembrane serine proteinase (TMPRSS6) antagonizes hepcidin induction by BMPs by cleaving HJV from the cell membrane. Inactivating mutations in TMPRSS6 lead to elevated hepcidin levels and consequent iron deficiency anemia. Here we demonstrate that TMPRSS6 is up-regulated in hepatic cell lines by hypoxia and by other activators of hypoxia-inducible factor (HIF). We show that TMPRSS6 expression is regulated by both HIF-1α and HIF-2α. This HIF-dependent up-regulation of TMPRSS6 increases membrane HJV shedding and decreases hepcidin promoter responsiveness to BMP signaling in hepatocytes. Our results reveal a potential role for TMPRSS6 in hepcidin regulation by hypoxia and provide a new molecular link between oxygen sensing and iron homeostasis. 相似文献