共查询到20条相似文献,搜索用时 9 毫秒
1.
Studies were conducted to identify a 64-kD thylakoid membrane protein of unknown function. The protein was extracted from chloroplast thylakoids under low ionic strength conditions and purified to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Four peptides generated from the proteolytic cleavage of the wheat 64-kD protein were sequenced and found to be identical to internal sequences of the chloroplast-coupling factor (CF1) α-subunit. Antibodies for the 64-kD protein also recognized the α-subunit of CF1. Both the 64-kD protein and the 61-kD CF1 α-subunit were present in the monocots barley (Hordeum vulgare), maize (Zea mays), oat (Avena sativa), and wheat (Triticum aestivum); but the dicots pea (Pisum sativum), soybean (Glycine max Merr.), and spinach (Spinacia oleracea) contained only a single polypeptide corresponding to the CF1 α-subunit. The 64-kD protein accumulated in response to high irradiance (1000 μmol photons m−2 s−1) and declined in response to low irradiance (80 μmol photons m−2 s−1) treatments. Thus, the 64-kD protein was identified as an irradiance-dependent isoform of the CF1 α-subunit found only in monocots. Analysis of purified CF1 complexes showed that the 64-kD protein represented up to 15% of the total CF1 α-subunit. 相似文献
2.
3.
4.
The thyroid stimulating hormone beta-subunit (TSHβ) with TSHα form a glycoprotein hormone that is produced by the anterior pituitary in the hypothalamus-pituitary-thyroid (HPT) axis. Although TSHβ has been known for many years to be made by cells of the immune system, the role of immune system TSH has remained unclear. Recent studies demonstrated that cells of the immune system produce a novel splice variant isoform of TSHβ (TSHβv), but little if any native TSHβ. Here, we show that within three days of systemic infection of mice with Listeria monocytogenes, splenic leukocytes synthesized elevated levels of TSHβv. This was accompanied by an influx of CD14+, Ly6C+, Ly6G+ cells into the thyroid of infected mice, and increased levels of intrathyroidal TSHβv gene expression. Adoptive transfer of carboxyfluorescein succinimidyl ester (CFSE)-labeled splenic leukocytes from infected mice into non-infected mice migrated into the thyroid as early as forty-eight hours post-cell transfer, whereas CFSE-labeled cells from non-infected mice failed to traffic to the thyroid. These findings demonstrate for the first time that during bacterial infection peripheral leukocytes produce elevated levels of TSHβv, and that spleen cells traffic to the thyroid where they produce TSHβv intrathyroidally. 相似文献
5.
6.
7.
David Seung Matthias Thalmann Francesca Sparla Maher Abou Hachem Sang Kyu Lee Emmanuelle Issakidis-Bourguet Birte Svensson Samuel C. Zeeman Diana Santelia 《The Journal of biological chemistry》2013,288(47):33620-33633
α-Amylases are glucan hydrolases that cleave α-1,4-glucosidic bonds in starch. In vascular plants, α-amylases can be classified into three subfamilies. Arabidopsis has one member of each subfamily. Among them, only AtAMY3 is localized in the chloroplast. We expressed and purified AtAMY3 from Escherichia coli and carried out a biochemical characterization of the protein to find factors that regulate its activity. Recombinant AtAMY3 was active toward both insoluble starch granules and soluble substrates, with a strong preference for β-limit dextrin over amylopectin. Activity was shown to be dependent on a conserved aspartic acid residue (Asp666), identified as the catalytic nucleophile in other plant α-amylases such as the barley AMY1. AtAMY3 released small linear and branched glucans from Arabidopsis starch granules, and the proportion of branched glucans increased after the predigestion of starch with a β-amylase. Optimal rates of starch digestion in vitro was achieved when both AtAMY3 and β-amylase activities were present, suggesting that the two enzymes work synergistically at the granule surface. We also found that AtAMY3 has unique properties among other characterized plant α-amylases, with a pH optimum of 7.5–8, appropriate for activity in the chloroplast stroma. AtAMY3 is also redox-regulated, and the inactive oxidized form of AtAMY3 could be reactivated by reduced thioredoxins. Site-directed mutagenesis combined with mass spectrometry analysis showed that a disulfide bridge between Cys499 and Cys587 is central to this regulation. This work provides new insights into how α-amylase activity may be regulated in the chloroplast. 相似文献
8.
9.
Yuyan Zhu Huayan Hou William V. Nikolic Jared Ehrhart Elona Rrapo Paula Bickford Brian Giunta Jun Tan 《PloS one》2008,3(5)
Background
Microglial activation, characterized by p38 MAPK or p44/42 MAPK pathway signal transduction, occurs in Alzheimer''s disease (AD). Our previous studies demonstrated CD45, a membrane-bound protein tyrosine phosphatase (PTP), opposed β-amyloid (Aβ) peptide-induced microglial activation via inhibition of p44/42 MAPK. Additionally we have shown agonism of the RB isoform of CD45 (CD45RB) abrogates lipopolysaccharide (LPS)-induced microglial activation.Methodology and Results
In this study, CD45RB modulation of Aβ peptide or LPS-activated primary cultured microglial cells was further investigated. Microglial cells were co-treated with “aged” FITC-Aβ1–42 and multiple CD45 isoform agonist antibodies. Data revealed cross-linking of CD45, particularly the CD45RB isoform, enhances microglial phagocytosis of Aβ1–42 peptide and inhibits LPS-induced activation of p44/42 and p38 pathways. Co-treatment of microglial cells with agonist CD45 antibodies results in significant inhibition of LPS-induced microglial TNF-α and IL-6 release through p44/42 and/or p38 pathways. Moreover, inhibition of either of these pathways augmented CD45RB cross-linking induced microglial phagocytosis of Aβ1–42 peptide. To investigate the mechanism(s) involved, microglial cells were co-treated with a PTP inhibitor (potassium bisperoxo [1,10-phenanthroline oxovanadate; Phen]) and Aβ1–42 peptides. Data showed synergistic induction of microglial activation as evidenced by TNF-α and IL-6 release; both of which are demonstrated to be dependent on increased p44/42 and/or p38 activation. Finally, it was observed that cross-linking of CD45RB in the presence of Aβ1–42 peptide, inhibits co-localization of microglial MHC class II and Aβ peptide; suggesting CD45 activation inhibits the antigen presenting phenotype of microglial cells.Conclusion
In summary, p38 MAPK is another novel signaling pathway, besides p44/42, in which CD45RB cross-linking negatively regulates microglial Aβ phagocytosis while increasing potentially neurotoxic inflammation. Therefore, agonism of CD45RB PTP activity may be an effective therapeutic target for novel agents to treat AD due to its Aβ lowering, and inflammation reducing, properties that are particularly targeted at microglial cells. Such treatments may be more effective with less potential to produce systemic side-effects than therapeutics which induce non-specific, systemic down-regulation of inflammation. 相似文献10.
11.
Stella Liong Megan K. W. Di Quinzio Gabrielle Fleming Michael Permezel Harry M. Georgiou 《PloS one》2013,8(10)
Vitamin D binding protein (VDBP) has previously been identified in the amniotic fluid and cervicovaginal fluid (CVF) of pregnant women. The biological functions of VDBP include acting as a carrier protein for vitamin D metabolites, the clearance of actin that is released during tissue injury and the augmentation of the pro-inflammatory response. This longitudinal observational study was conducted on 221 healthy pregnant women who spontaneously laboured and delivered either at term or preterm. Serial CVF samples were collected and VDBP was measured by ELISA. Binary logistic regression analysis was performed to assess the utility of VDBP as a predictor of labour. VDBP in the CVF did not change between 20 and 35 weeks'' gestation. VDBP measured in-labour was significantly increased 4.2 to 7.4-fold compared to 4–7, 8–14 and 15–28 days before labour (P<0.05). VDBP concentration was 4.3-fold significantly higher at 0–3 days compared to 15–28 days pre-labour (P<0.05). The efficacy of VDBP to predict spontaneous labour onset within 3 days provided a positive and negative predictive value of 82.8% and 95.3% respectively (area under receiver operator characteristic curve = 0.974). This longitudinal study of pregnant women suggests that VDBP in the CVF may be a useful predictor of labour. 相似文献
12.
13.
Henri?tte J. Rozeboom Shukun Yu Susan Madrid Kor H. Kalk Ran Zhang Bauke W. Dijkstra 《The Journal of biological chemistry》2013,288(37):26764-26774
α-1,4-Glucan lyase (EC 4.2.2.13) from the red seaweed Gracilariopsis lemaneiformis cleaves α-1,4-glucosidic linkages in glycogen, starch, and malto-oligosaccharides, yielding the keto-monosaccharide 1,5-anhydro-d-fructose. The enzyme belongs to glycoside hydrolase family 31 (GH31) but degrades starch via an elimination reaction instead of hydrolysis. The crystal structure shows that the enzyme, like GH31 hydrolases, contains a (β/α)8-barrel catalytic domain with B and B′ subdomains, an N-terminal domain N, and the C-terminal domains C and D. The N-terminal domain N of the lyase was found to bind a trisaccharide. Complexes of the enzyme with acarbose and 1-dexoynojirimycin and two different covalent glycosyl-enzyme intermediates obtained with fluorinated sugar analogues show that, like GH31 hydrolases, the aspartic acid residues Asp553 and Asp665 are the catalytic nucleophile and acid, respectively. However, as a unique feature, the catalytic nucleophile is in a position to act also as a base that abstracts a proton from the C2 carbon atom of the covalently bound subsite −1 glucosyl residue, thus explaining the unique lyase activity of the enzyme. One Glu to Val mutation in the active site of the homologous α-glucosidase from Sulfolobus solfataricus resulted in a shift from hydrolytic to lyase activity, demonstrating that a subtle amino acid difference can promote lyase activity in a GH31 hydrolase. 相似文献
14.
15.
Youngjin Cho Rachel Silverstein Max T. Geisinger Stephen Martinkovich Holly Corkill Jess M. Cunnick Sonia L. Planey John A. Arnott 《PloS one》2015,10(9)
Background
CCN2 acts as an anabolic growth factor to regulate osteoblast differentiation and function. CCN2 is induced by TGF-β1 and acts as a mediator of TGF-β1 induced matrix production in osteoblasts and Src is required for CCN2 induction by TGF-β1; however, the molecular mechanisms that control CCN2 induction in osteoblasts are poorly understood. AFAP1 binds activated forms of Src and can direct the activation of Src in certain cell types, however a role for AFAP1 downstream of TGF-β1 or in osteoblats is undefined. In this study, we investigated the role of AFAP1 for CCN2 induction by TGF-β1 in primary osteoblasts.Results
We demonstrated that AFAP1 expression in osteoblasts occurs in a biphasic pattern with maximal expression levels occurring during osteoblast proliferation (~day 3), reduced expression during matrix production/maturation (~day 14–21), an a further increase in expression during mineralization (~day 21). AFAP1 expression is induced by TGF-β1 treatment in osteoblasts during days 7, 14 and 21. In osteoblasts, AFAP1 binds to Src and is required for Src activation by TGF-β1 and CCN2 promoter activity and protein induction by TGF-β1 treatment was impaired using AFAP1 siRNA, indicating the requirement of AFAP1 for CCN2 induction by TGF-β1. We also demonstrated that TGF-β1 induction of extracellular matrix protein collagen XIIa occurs in an AFAP1 dependent fashion.Conclusions
This study demonstrates that AFAP1 is an essential downstream signaling component of TGF-β1 for Src activation, CCN2 induction and collagen XIIa in osteoblasts. 相似文献16.
Fernando J. Amador Lynn Kimlicka Peter B. Stathopulos Geneviève M.C. Gasmi-Seabrook David H. MacLennan Filip Van Petegem Mitsuhiko Ikura 《Journal of molecular biology》2013
Ryanodine receptors (RyRs) are large tetrameric calcium (Ca2 +) release channels found on the sarcoplasmic reticulum that respond to dihydropyridine receptor activity through a direct conformational interaction and/or indirect Ca2 + sensitivity, propagating sarcoplasmic reticulum luminal Ca2 + release in the process of excitation–contraction coupling. There are three human RyR subtypes, and several debilitating diseases are linked to heritable mutations in RyR1 and RyR2 including malignant hypothermia, central core disease, catecholaminergic polymorphic ventricular tachycardia (CPVT) and arrhythmogenic right ventricular dysplasia type 2 (ARVD2). Despite the recent appreciation that many disease-associated mutations within the N-terminal RyRABC domains (i.e., residues 1–559) are located in the putative interfaces mediating tetrameric channel assembly, the precise structural and dynamical consequences of the mutations are not well understood. We used solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography to examine the effect of ARVD2-associated (i.e., R176Q) and CPVT-associated [i.e., P164S, R169Q and delta exon 3 (Δ3)] mutations on the structure and dynamics of RyR2A. Our solution NMR data exposed a mobile α-helix, unique to type 2; further, this α2 helix rescues the β-strand lost in RyR2A Δ3 but remains dynamic in the hot-spot loop (HS-loop) P164S, R169Q and R176Q mutant proteins. Docking of our X-ray crystal/NMR hybrid structure into the RyR1 cryo-electron microscopy map revealed that this RyR2A α2 helix is in close proximity to dense “columns” projecting toward the channel pore. This is in contrast to the HS-loop mutations that cause structural changes largely localized to the intersubunit interface between adjacent ABC domains. Taken together, our data suggest that ARVD2 and CPVT mutations have at least two distinct structural consequences linked to channel dysfunction: perturbation of the HS-loop (i.e., domain A):domain B intersubunit interface and disruption of the communication between the N-terminal region and the channel domain. 相似文献
17.
Muntinghe FL Abdulahad WH Huitema MG Damman J Seelen MA Lems SP Hepkema BG Navis G Westra J 《PloS one》2012,7(2):e31257
Background
In patients with end stage renal disease (ESRD) we observed protection from inflammation-associated mortality in CCR5Δ32 carriers, leading to CCR5 deficiency, suggesting impact of CCR5Δ32 on inflammatory processes. Animal studies have shown that CCR5 deficiency is associated with a more pronounced Th2 type immune response, suggesting that in human CCR5Δ32 carriers the immune response may be more Th2 type directed. So, in the present study we determined the Th1-Th2 type directed immune response in ESRD patients carrying and not carrying the CCR5Δ32 genetic variant after stimulation.Methodology/Principal Findings
We tested this hypothesis by determining the levels of IFN-γ and IL-4 and the distribution of Th1, Th2 and Th17 directed circulating CD4+ and CD8+ T cells and regulatory T cells (Tregs) after stimulation in ESRD patients with (n = 10) and without (n = 9) the CCR5Δ32 genotype. The extracellular levels of IFN-γ and IL-4 did not differ between CCR5Δ32 carriers and non carriers. However, based on their intracellular cytokine profile the percentages IL-4 secreting CD4+ and CD8+ T cells carrying the CCR5Δ32 genotype were significantly increased (p = 0.02, respectively p = 0.02) compared to non carriers, indicating a more Th2 type directed response. Based on their intracellular cytokine profile the percentages IFN-γ and IL-17 secreting T cells did not differ between carriers and non-carriers nor did the percentage Tregs, indicating that the Th1, Th17 and T regulatory response was not affected by the CCR5Δ32 genotype.Conclusions/Significance
This first, functional human study shows a more pronounced Th2 type immune response in CCR5Δ32 carriers compared to non carriers. These differences may be involved in the previously observed protection from inflammation-associated mortality in ESRD patients carrying CCR5Δ32. 相似文献18.
19.
Low-risk type human papillomavirus (HPV) 6 and 11 infection causes recurrent respiratory papillomatosis (RRP) and genital warts. RRP is the most common benign tumor of the larynx in children with frequent relapses. Repeated surgeries are often needed to improve vocal function and prevent life-threatening respiratory obstruction. Currently, there are no effective treatments available to completely eliminate these diseases, largely due to limited knowledge regarding their viral molecular pathogenesis. HPV E6 proteins contribute to cell immortalization by interacting with a variety of cellular proteins, which have been well studied for the high-risk type HPVs related to cancer progression. However, the functions of low-risk HPV E6 proteins are largely unknown. In this study, we report GST-pulldown coupled mass spectrometry analysis with low-risk HPV E6 proteins that identified sterile alpha motif domain containing 9 (SAMD9) as a novel interacting partner. We then confirmed the interaction between HPV-E6 and SAMD9 using co-immunoprecipitation, proximity ligation assay, and confocal immunofluorescence staining. The SAMD9 gene is down-regulated in a variety of neoplasms and deleteriously mutated in normophosphatemic familial tumoral calcinosis. Interestingly, SAMD9 also has antiviral functions against poxvirus. Our study adds to the limited knowledge of the molecular properties of low-risk HPVs and describes new potential functions for the low-risk HPV E6 protein. 相似文献
20.
Denise Meyerson 《Bioethics》2015,29(5):342-352
Demands for access to experimental therapies are frequently framed in the language of rights. This article examines the justifiability of such demands in the specific context of surgical innovations, these being promising but non‐validated and potentially risky departures from standard surgical practices. I argue that there is a right to access innovative surgery, drawing analogies with other generally accepted rights in medicine, such as the right not to be forcibly treated, to buy contraceptives, and to choose to have an abortion, including a post‐viability abortion where the mother's life or health is threatened by the pregnancy. I argue that we accept these rights because we believe that people are entitled to try to preserve their lives and health and to make choices of an important and intensely personal kind, and I suggest that a person's choice of medical treatment should be seen in the same light. However, since few rights are absolute, I also consider the circumstances in which it may be justifiable to limit the right to access innovative surgery. In discussing this question, I apply the human rights standard of proportionality, comparing the importance of the reasons for limiting the right with the severity of the invasion on liberty. 相似文献