首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant architecture is considered to affect herbivory intensity, but it is one of the least studied factors in plant–insect interactions, especially for gall-inducing insects. This study aimed to investigate the influence of plant architecture on the speciose fauna of gall-inducing insects associated with 17 species of Baccharis. Five architectural variables were evaluated: plant height, number of fourth-level shoots, biomass, average level and number of ramifications. The number of galling species associated with each host plant species was also determined. To test the effects of plant architecture on gall richness at the individual level, we used another data set where the number of fourth-level shoots and gall richness were determined for B. concinna, B. dracunculifolia, and B. ramosissima every 3 weeks during 1 year. The average similarity between host species based on gall fauna was low (9%), but plants with the same architectural pattern tended to support similar gall communities. The most important architectural trait influencing gall richness at the species level was the number of fourth-level shoots, which is indicative of the availability of plant meristems, a fundamental tissue for gall induction and development. This variable also showed a positive correlation with gall richness at the individual level. We propose that variations in gall richness among host species are driven by interspecific differences in plant architecture via availability of young, undifferentiated tissue, which is genetically controlled by the strength of the apical dominance. Plant architecture should have evolutionary consequences for gall communities, promoting insect radiation among architecturally similar plants through host shift and sympatric speciation. We also discuss the role of plant architecture in the global biogeography of gall-inducing insects. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Understanding the interactions among plants, hemipterans, and ants has provided numerous insights into a range of ecological and evolutionary processes. In these systems, however, studies concerning the isolated direct and indirect effects of aphid colonies on host plant and other herbivores remain rare at best. The aphid Uroleucon erigeronensis forms dense colonies on the apical shoots of the host plant Baccharis dracunculilfolia (Asteraceae). The honeydew produced by these aphids attracts several species of ants that might interfere with other herbivores. Four hypotheses were tested in this system: (1) ants tending aphids reduce the abundance of other herbivores; (2) the effects of ants and aphids upon herbivores differ between chewing and fluid-sucking herbivores; (3) aphids alone reduce the abundance of other herbivores; and (4), the aphid presence negatively affects B. dracunculifolia shoot growth. The hypotheses were evaluated with ant and aphid exclusion experiments, on isolated plant shoots, along six consecutive months. We adjusted linear mixed-effects models for longitudinal data (repeated measures), with nested spatial random effect. The results showed that: (1) herbivore abundance was lower on shoots with aphids than on shoots without aphids, and even lower on shoots with aphids and ants; (2) both chewing and fluid-sucking insects responded similarly to the treatment, and (3) aphid presence affected negatively B. dracunculifolia shoot growth. Thus, since aphids alone changed plant growth and the abundance of insect herbivores, we suggest that the ant–aphid association is important to the organization of the system B. dracunculifolia-herbivorous insects.  相似文献   

3.

Background and Aims

Models assessing the prospects of plant species at the landscape level often focus primarily on the relationship between species dynamics and landscape structure. However, the short-term prospects of species with slow responses to landscape changes depend on the factors affecting local population dynamics. In this study it is hypothesized that large herbivores may be a major factor affecting the short-term prospects of slow-responding species in the European landscape, because large herbivores have increased in number in this region in recent decades and can strongly influence local population dynamics.

Methods

The impact of browsing by large herbivores was simulated on the landscape-level dynamics of the dry grassland perennial polycarpic herb Scorzonera hispanica. A dynamic, spatially explicit model was used that incorporated information on the location of patches suitable for S. hispanica, local population dynamics (matrices including the impact of large herbivores), initial population sizes and dispersal rate of the species. Simulations were performed relating to the prospects of S. hispanica over the next 30 years under different rates of herbivory (browsing intensity) and varying frequencies of population destruction (e.g. by human activity).

Key Results

Although a high rate of herbivory was detected in most populations of S. hispanica, current landscape-level dynamics of S. hispanica were approximately in equilibrium. A decline or increase of over 20 % in the herbivory rate promoted rapid expansion or decline of S. hispanica, respectively. This effect was much stronger in the presence of population destruction.

Conclusions

Browsing by large herbivores can have a dramatic effect on the landscape dynamics of plant species. Changes in the density of large herbivores and the probability of population destruction should be incorporated into models predicting species abundance and distribution.  相似文献   

4.

Background and Aims

Plant populations experiencing divergent pollination environments may be under selection to modify floral traits in ways that increase both attractiveness to and efficiency of novel pollinators. These changes may come at the cost of reducing overall effectiveness of other pollinators. The goal of this study was to examine differences in attractiveness and efficiency between Clarkia concinna and C. breweri, sister species of annual plants with parapatric distributions.

Methods

An assessment was made as to whether observed differences in visitors between natural populations are driven by differences in floral traits or differences in the local pollination environment. Differences in floral attractiveness were quantified by setting out arrays of both species in the geographical range of each species and exposing both species to nocturnal hawkmoths (Hyles lineata) in flight cages. Differences in visitor efficiency were estimated by measuring stigma–visitor contact frequency and pollen loads for diurnal visitors, and pollen deposition on stigmas for hawkmoths.

Key Results

The composition of visitors to arrayed plants was similar between plant species at any particular site, but highly divergent among sites, and reflected differences in visitors to natural populations. Diurnal insects visited both species, but were more common at C. concinna populations. Hummingbirds and hawkmoths were only observed visiting within the range of C. breweri. Despite attracting similar species when artificially presented together, C. concinna and C. breweri showed large differences in pollinator efficiency. All visitors except hawkmoths pollinated C. concinna more efficiently.

Conclusions

Differences in the available pollinator community may play a larger role than differences in floral traits in determining visitors to natural populations of C. concinna and C. breweri. However, floral traits mediate differences in pollinator efficiency. Increased effectiveness of the novel hawkmoth pollinator on C. breweri comes at relatively little cost in attractiveness to other visitors, but at large cost in their efficiency as pollinators.  相似文献   

5.

Background and Aims

Recent biodiversity research has focused on ecosystem processes, but less is known about responses of populations of individual plant species to changing community diversity and implications of genetic variation within species. To address these issues, effects of plant community diversity on the performance of different cultivars of Lolium perenne were analysed.

Methods

Populations of 15 genetic cultivars of Lolium perenne were established in experimental grasslands varying in richness of species (from 1 to 60) and functional groups (from 1 to 4). Population sizes, mean size of individual plants, biomass of individual shoots and seed production were measured in the first and second growing season after establishment.

Key Results

Population sizes of all cultivars decreased with increasing community species richness. Plant individuals formed fewer shoots with a lower shoot mass in more species-rich plant communities. A large proportion of variation in plant size and relative population growth was attributable to effects of community species and functional group richness, but the inclusion of cultivar identity explained additional 4–7 % of variation. Cultivar identity explained most variation (28–51 %) at the shoot level (biomass of individual tillers and reproductive shoots, seed production, heading stage). Coefficients of variation of the measured variables across plant communities were larger in cultivars with a lower average performance, indicating that this variation was predominantly due to passive growth reductions and not a consequence of larger adaptive plastic responses. No single cultivar performed best in all communities.

Conclusions

The decreasing performance of Lolium perenne in plant communities of increasing species richness suggests a regulation of competitive interactions by species diversity. Genetic variation within species provides a base for larger phenotypic variation and may affect competitive ability. However, heterogeneous biotic environments (= plant communities of different species composition) are important for the maintenance of intra-specific genetic variation.Key words: Biodiversity, competition, genetic variation, growth reduction, Lolium perenne, phenotypic plasticity, species richness  相似文献   

6.
In this study, the mortality factors acting upon the galling psyllid Neopelma baccharidis Burckhardt (Homoptera) caused by its host plant, Baccharis dracunculifolia De Candole (Asteraceae) were analysed. In March 1999, 982 galls of the same cohort were randomly marked on 109 individuals of B. dracunculifolia in the field. Galls were censused each month during their development, from April to August, and dead galls were collected and analysed for mortality factors. Gall dehiscence rates were calculated for each month. The major mortality source of N. baccharidis was gall dropping (13.2% of the original cohort), which is probably a normal outcome of previous mortality caused by the other factors observed in this study. Unknown factors killed 11.7% of this gall population and were ascribed to plant resistance during gall development. Empty galls represented 7.7% of the observed mortality and may be a consequence of egg retention or egg mortality/abortion related to variations in plant quality. Shoot mortality was high during the dry season and killed 7.5% of the galls, but this impact was minimized after the third month from gall formation due to the ability of nymphs to accelerate development and emerge from galls on dying shoots. However, the size of dehisced galls on dead shoots tended to be smaller, possibly affecting adult performance. Mortality of N. baccharidis attributed to B. dracunculifolia strongly controlled the galling insect population, killing 40.7% of the original cohort of galls. Plant‐mediated mortality was caused by often neglected factors acting predominantly during the first 3 months of development, which are critical to gall survivorship. These results reinforce the importance of bottom‐up forces in plant‐insect systems.  相似文献   

7.

Background and Aims

Stinging nettle (Urtica dioica) is a herbaceous, dioecious perennial that is widely distributed around the world, reproduces both sexually and asexually, and is characterized by rapid growth. This work was aimed at evaluating the effects of plant maturity, shoot reproduction and sex on the growth of leaves and shoots.

Methods

Growth rates of apical shoots, together with foliar levels of phytohormones (cytokinins, auxins, absicisic acid, jasmonic acid and salicylic acid) and other indicators of leaf physiology (water contents, photosynthetic pigments, α-tocopherol and Fv/Fm ratios) were measured in juvenile and mature plants, with a distinction made between reproductive and non-reproductive shoots in both males and females. Vegetative growth rates were not only evaluated in field-grown plants, but also in cuttings obtained from these plants. All measurements were performed during an active vegetative growth phase in autumn, a few months after mature plants reproduced during spring and summer.

Key Results

Vegetative growth rates in mature plants were drastically reduced compared with juvenile ones (48 % and 78 % for number of leaves and leaf biomass produced per day, respectively), which was associated with a loss of photosynthetic pigments (up to 24 % and 48 % for chlorophylls and carotenoids, respectively) and increases of α-tocopherol (up to 2·7-fold), while endogenous levels of phytohormones did not differ between mature and juvenile plants. Reductions in vegetative growth were particularly evident in reproductive shoots of mature plants, and occurred similarly in both males and females.

Conclusions

It is concluded that (a) plant maturity reduces vegetative growth in U. dioica, (b) effects of plant maturity are evident both in reproductive and non-reproductive shoots, but particularly in the former, and (c) these changes occur similarly in both male and female plants.  相似文献   

8.
9.
Baccharis dracunculifolia DC. and Baccharis microdonta DC. (Asteraceae) are woody species morphologically similar growing in Uruguay, where not taxonomists people often confuse them in field conditions. As the essential oil of B. dracunculifolia (‘vassoura’ oil) is highly prized by the flavor and fragrance industry, the correct differentiation of the two species is a key factor in exploiting them profitably and reasonably. To differentiate both Baccharis species, in this work their volatile expression profiles were studied as an alternative tool to determine authenticity and quality. Volatile organic compounds (VOCs) were monthly extracted during an entire year from aerial parts of wild populations by simultaneous distillation extraction (SDE), and studied by gas chromatography/mass spectrometry (GC/MS; identification) and conventional gas chromatography (GC-FID; component abundances determination). Enantioselective gas chromatography/mass spectrometry (Es-GC/MS) was applied in the search of parameters able to ensure genuineness of each species extract. Qualitative VOCs profiles were found to be similar for both species, being β-pinene, limonene, spathulenol, caryophyllene oxide, and viridiflorol the main components. However, the abundance of those VOCs were two to ten times higher in B. dracunculifolia than in B. microdonta during the year of study. These Baccharis spp. showed species-specific patterns of VOCs expression according to the seasonality, and interestingly, oxygenated compounds (trans-pinocarveol and myrtenal) increased their abundances at full-flowering stages. The enantiomeric distribution of selected monoterpenes (α- and β-pinenes, limonene, linalool, terpinen-4-ol, and α-terpineol) presented differential values for both Baccharis spp., meaning that Es-GC might be a useful tool for differentiating chemically both species in Uruguay for genuineness determination purposes.  相似文献   

10.

Background and Aims

Both regional and local plant abundances are driven by species'' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf–height–seed) traits and by actual performance in the botanical garden.

Methods

Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area – height – seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates.

Key Results

After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level.

Conclusions

Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially underlying clonal growth effects on abundance. Garden performance parameters provide a practical approach to assessing the roles of clonal growth morphological traits (and LHS traits) for large sets of species.  相似文献   

11.

Background and Aims

The males and females of many dioecious plant species differ from one another in important life-history traits, such as their size. If male and female reproductive functions draw on different resources, for example, one should expect males and females to display different allocation strategies as they grow. Importantly, these strategies may differ not only between the two sexes, but also between plants of different age and therefore size. Results are presented from an experiment that asks whether males and females of Mercurialis annua, an annual plant with indeterminate growth, differ over time in their allocation of two potentially limiting resources (carbon and nitrogen) to vegetative (below- and above-ground) and reproductive tissues.

Methods

Comparisons were made of the temporal patterns of biomass allocation to shoots, roots and reproduction and the nitrogen content in the leaves between the sexes of M. annua by harvesting plants of each sex after growth over different periods of time.

Key Results and Conclusions

Males and females differed in their temporal patterns of allocation. Males allocated more to reproduction than females at early stages, but this trend was reversed at later stages. Importantly, males allocated proportionally more of their biomass towards roots at later stages, but the roots of females were larger in absolute terms. The study points to the important role played by both the timing of resource deployment and the relative versus absolute sizes of the sinks and sources in sexual dimorphism of an annual plant.  相似文献   

12.
Insect–plant interactions occur in several ways and have considerable environmental and ecological importance. Many feeding strategies have evolved among herbivorous insects, with host–herbivore systems likely being influenced by trophobionts with ants. We investigated how these interactions vary across elevation gradients by evaluating the structure of the herbivorous insect community and ants associated with Baccharis dracunculifolia at three distinct elevations (800, 1100, and 1400 m a.s.l.) on a mountain in southeastern Brazil. Moreover, we evaluated the diversity and specialisation of interactions between herbivores and host plants along the elevational gradient. We sampled herbivores and ants on 60 plants at each elevation (totalling 180 plant individuals). Herbivore species composition differed among elevations, as did interaction diversity and specialisation. Richness and abundance of chewing insects increased with elevation, while β‐diversity among patches of the host plant was higher at the lowest elevation, probably due to the patchy occurrence of B. dracunculifolia. Richness and abundance of sap‐sucking insects were higher at the intermediate elevation, possibly due to local environmental conditions. We observed a positive relationship between ant and herbivore trophobiont richness on B. dracunculifolia. We found that interactions were more specialised and less diverse at higher elevations compared to the lowest elevation. Changes in vegetation and environmental variables shaped species distributions and their ecological interactions along the elevation gradient. Our study demonstrates that increased elevation changes the structure and patterns of interactions of the herbivore insect guilds associated with the host plant B. dracunculifolia. Ant effects depend on the context, the environment, and the species of ants involved, and are essential for the presence of insect trophobionts.  相似文献   

13.

Background

Frequently, in dioecious plants, female plants allocate more resources to reproduction than male plants. Therefore it is expected that asymmetrical allocation to reproduction may lead to a reproduction-growth tradeoff, whereby female plants grow less than male plants, but invest more in defenses and thus experience lower herbivory than male plants.

Methodology/Principal Findings

We tested these expectations by comparing resource allocation to reproduction, growth and defense and its consequences on herbivory in three sympatric dioecious Chamaedorea palms (C. alternans, C. pinnatifrons and C. ernesti-augusti) using a pair-wise design (replicated male/female neighboring plants) in a Mexican tropical rain forest. Our findings support the predictions. Biomass allocation to reproduction in C. pinnatifrons was 3-times higher in female than male plants, consistent with what is known in C. alternans and C. ernesti-augusti. Growth (height and leaf production rate and biomass production) was higher in male plants of all three species. Female plants of the three species had traits that suggest greater investment in defense, as they had 4–16% tougher leaves, and 8–18% higher total phenolic compounds concentration. Accordingly, female plants sustained 53–78% lower standing herbivory and 49–87% lower herbivory rates than male plants.

Conclusions/Significance

Our results suggests that resource allocation to reproduction in the studied palms is more costly to female plants and this leads to predictable intersexual differences in growth, defense and herbivory. We conclude that resource allocation to reproduction in plants can have important consequences that influence their interaction with herbivores. Since herbivory is recognized as an important selective force in plants, these results are of significance to our understanding of plant defense evolution.  相似文献   

14.
Han Q  Kabeya D  Hoch G 《Annals of botany》2011,107(8):1405-1411

Background and Aims

Masting, i.e. synchronous but highly variable interannual seed production, is a strong sink for carbon and nutrients. It may, therefore, compete with vegetative growth. It is currently unknown whether increased atmospheric CO2 concentrations will affect the carbon balance (or that of other nutrients) between reproduction and vegetative growth of forest species. In this study, reproduction and vegetative growth of shoots of mature beech (Fagus sylvatica) trees grown at ambient and elevated atmospheric CO2 concentrations were quantified. It was hypothesized that within a shoot, fruiting has a negative effect on vegetative growth, and that this effect is ameliorated at increased CO2 concentrations.

Methods

Reproduction and its competition with leaf and shoot production were examined during two masting events (in 2007 and 2009) in F. sylvatica trees that had been exposed to either ambient or elevated CO2 concentrations (530 µmol mol−1) for eight consecutive years, between 2000 and 2008.

Key Results

The number of leaves per shoot and the length of terminal shoots was smaller or shorter in the two masting years compared with the one non-masting year (2008) investigated, but they were unaffected by elevated CO2 concentrations. The dry mass of terminal shoots was approx. 2-fold lower in the masting year (2007) than in the non-masting year in trees growing at ambient CO2 concentrations, but this decline was not observed in trees exposed to elevated CO2 concentrations. In both the CO2 treatments, fruiting significantly decreased nitrogen concentration by 25 % in leaves and xylem tissue of 1- to 3-year-old branches in 2009.

Conclusions

Our findings indicate that there is competition for resources between reproduction and shoot growth. Elevated CO2 concentrations reduced this competition, indicating effects on the balance of resource allocation between reproduction and vegetative growth in shoots with rising atmospheric CO2 concentrations.  相似文献   

15.

Background

Recovering endangered species would benefit from identifying and ranking of the factors that threaten them. Simply managing for multiple positive influences will often aid in recovery; however, the relative impacts of multiple threats and/or interactions among them are not always predictable. We used a series of experiments and quantitative observational studies to examine the importance of five potential limiting factors to the abundance of a state-listed endangered hemiparasitic annual forb, Cordylanthus rigidus ssp. littoralis (C.r.l., California, USA): host availability, mammalian herbivores, insect seed predators, fire suppression, and exotic species. While this initial assessment is certainly not a complete list, these factors stem from direct observation and can inform provisional recommendations for management and further research.

Methodology and Principal Findings

Studies were conducted at five sites and included assessments of the influence of host availability, exotic species, exclusion of mammalian herbivores and insect seed predators on C.r.l. productivity, and simulated effects of fire on seed germination. C.r.l. was limited by multiple threats: individuals with access to host species produced up to three times more inflorescences than those lacking hosts, mammalian herbivory reduced C.r.l. size and fecundity by more than 50% and moth larvae reduced seed production by up to 40%. Litter deposition and competition from exotic plant species also appears to work in conjunction with other factors to limit C.r.l. throughout its life cycle.

Conclusions and Significance

The work reported here highlights the contribution that a series of small-scale studies can make to conservation and restoration. Taken as a whole, the results can be used immediately to inform current management and species recovery strategies. Recovery of C.r.l. will require management that addresses competition with exotic plant species, herbivore pressure, and availability of preferred host species.  相似文献   

16.
Insect galls may be study models to test the distribution of pectins and arabinogalactan-proteins (AGPs) and their related functions during plant cell cycles. These molecules are herein histochemically and immunocitochemically investigated in the kidney-shaped gall induced by Baccharopelma dracunculifoliae (Psyllidae) on leaves of Baccharis dracunculifolia DC. (Asteraceae) on developmental basis. The homogalacturonans (HGAs) (labeled by JIM5) and the arabinans (labeled by LM6) were detected either in non-galled leaves or in young galls, and indicated stiffening of epidermal cell walls, which is an important step for cell redifferentiation. The labeling of HGAs by JIM7 changed from young to senescent stage, with an increase in the rigidity of cell walls, which is important for the acquaintance of the final gall shape and for the mechanical opening of the gall. The variation on the degree of HGAs during gall development indicated differential PMEs activity during gall development. The epitopes recognized by LM2 (AGP glycan) and LM5 (1–4-β-D-galactans) had poor alterations from non-galled leaves towards gall maturation and senescence. Moreover, the dynamics of pectin and AGPs on two comparable mature kidney-shaped galls on B. dracunculifolia and on B. reticularia revealed specific peculiarities. Our results indicate that similar gall morphotypes in cogeneric host species may present distinct cell responses in the subcelular level, and also corroborate the functions proposed in literature for HGAs.  相似文献   

17.

Background and Aims

Reproductive costs imply trade-offs in resource distribution at the physiological level, expressed as changes in future growth and/or reproduction. In dioecious species, females generally endure higher reproductive effort, although this is not necessarily expressed through higher somatic costs, as compensatory mechanisms may foster resource uptake during reproduction.

Methods

To assess effects of reproductive allocation on vegetative growth and physiological response in terms of costs and compensation mechanisms, a manipulative experiment of inflorescence bud removal was carried out in the sexually dimorphic species Corema album. Over two consecutive growing seasons, vegetative growth patterns, water status and photochemical efficiency were measured to evaluate gender-related differences.

Key Results

Suppression of reproductive allocation resulted in a direct reduction in somatic costs of reproduction, expressed through changes in growth variables and plant physiological status. Inflorescence bud removal was related to an increase in shoot elongation and water potential in male and female plants. The response to inflorescence bud removal showed gender-related differences that were related to the moment of maximum reproductive effort in each sexual form: flowering in males and fruiting in females. Delayed costs of reproduction were found in both water status and growth variables, showing gender-related differences in resource storage and use.

Conclusions

Results are consistent with the existence of a trade-off between reproductive and vegetative biomass, indicating that reproduction and growth depend on the same resource pool. Gender-related morphological and physiological differences arise as a response to different reproductive resource requirements. Delayed somatic costs provide evidence of gender-related differences in resource allocation and storage. Adaptive differences between genders in C. album may arise through the development of mechanisms which compensate for the cost of reproduction.  相似文献   

18.

Background and Aims

The cost of reproduction in dioecious plants is often female-biased. However, several studies have reported no difference in costs of reproduction between the sexes. In this study, the relative reproductive allocation and costs at the shoot and whole-plant levels were examined in woody dioecious Rhus javanica and R. trichocarpa, in order to examine differences between types of phenophase (i.e. physiological stage of development).

Methods

Male and female Rhus javanica and R. trichocarpa were sampled and the reproductive and vegetative allocation of the shoot were estimated by harvesting reproductive current-year shoots during flowering and fruiting. Measurements were made of the number of reproductive and total current-year shoots per whole plant, and of the basal area increment (BAI). The numbers of reproductive and total current-year shoots per 1-year-old shoot were counted in order to examine the costs in the following year at the shoot level.

Key Results

A female-biased annual reproductive allocation was found; however, the ratio of reproductive current-year shoots per tree and the BAI did not differ between sexes in Rhus javanica and R. trichocarpa. The percentage of 1-year-old shoots with at least one reproductive current-year shoot was significantly male-biased in R. trichocarpa, but not in R. javanica, indicating that there was a relative cost at the shoot level only in R. trichocarpa. The female-biased leaf mass per shoot, an indicator of compensation for costs, was only found in R. javanica.

Conclusions

Relative reproductive costs at the shoot level were detected in Rhus trichocarpa, which has simultaneous leafing and flowering, but not in R. javanica, which has leafing followed by flowering. However, the costs for the whole-plant level were diminished in both species. The results suggest that the phenophase type may produce the different costs for R. javanica and R. trichocarpa through the development of a compensation mechanism.Key words: Modularity, phenology, reproductive allocation, reproductive cost, Rhus javanica, Rhus trichocarpa  相似文献   

19.

Background and Aims

A common response of wetland plants to flooding is the formation of aquatic adventitious roots. Observations of aquatic root growth are widespread; however, controlled studies of aquatic roots of terrestrial herbaceous species are scarce. Submergence tolerance and aquatic root growth and physiology were evaluated in two herbaceous, perennial wetland species Cotula coronopifolia and Meionectes brownii.

Methods

Plants were raised in large pots with ‘sediment’ roots in nutrient solution and then placed into individual tanks and shoots were left in air or submerged (completely or partially). The effects on growth of aquatic root removal, and of light availability to submerged plant organs, were evaluated. Responses of aquatic root porosity, chlorophyll and underwater photosynthesis, were studied.

Key Results

Both species tolerated 4 weeks of complete or partial submergence. Extensive, photosynthetically active, aquatic adventitious roots grew from submerged stems and contributed up to 90 % of the total root dry mass. When aquatic roots were pruned, completely submerged plants grew less and had lower stem and leaf chlorophyll a, as compared with controls with intact roots. Roots exposed to the lowest PAR (daily mean 4·7 ± 2·4 µmol m−2 s−1) under water contained less chlorophyll, but there was no difference in aquatic root biomass after 4 weeks, regardless of light availability in the water column (high PAR was available to all emergent shoots).

Conclusions

Both M. brownii and C. coronopifolia responded to submergence with growth of aquatic adventitious roots, which essentially replaced the existing sediment root system. These aquatic roots contained chlorophyll and were photosynthetically active. Removal of aquatic roots had negative effects on plant growth during partial and complete submergence.  相似文献   

20.
Niu K  Schmid B  Choler P  Du G 《PloS one》2012,7(4):e35448

Background

Understanding the relationship between species traits and species abundance is an important goal in ecology and biodiversity science. Although theoretical studies predict that traits related to performance (e.g. reproductive allocation) are most directly linked to species abundance within a community, empirical investigations have rarely been done. It also remains unclear how environmental factors such as grazing or fertilizer application affect the predicted relationship.

Methodology

We conducted a 3-year field experiment in a Tibetan alpine meadow to assess the relationship between plant reproductive allocation (RA) and species relative abundance (SRA) on control, grazed and fertilized plots. Overall, the studied plant community contained 32 common species.

Principal Findings

At the treatment level, (i) RA was negatively correlated with SRA on control plots and during the first year on fertilized plots. (ii) No negative RA–SRA correlations were observed on grazed plots and during the second and third year on fertilized plots. (iii) Seed size was positively correlated with SRA on control plots. At the plot level, the correlation between SRA and RA were not affected by treatment, year or species composition.

Conclusions/Significance

Our study shows that the performance-related trait RA can negatively affect SRA within communities, which is possibly due to the tradeoffs between clonal growth (for space occupancy) and sexual reproduction. We propose that if different species occupy different positions along these tradeoffs it will contribute to biodiversity maintenance in local communities or even at lager scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号