首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic cells are migratory cells. Before they extravasate from the circulation into the skin across capillary blood vessel walls, they have to interact with endothelial cells. Using a fluorimetric adhesion assay, we have recently shown that CD34+-derived dendritic cell precursors are able to bind to resting and stimulated dermal microvascular endothelial cells. In the present study, we attempted to visualize this process at an ultrastructural level. CD34+ progenitor cells were purified from human cord blood samples by means of immunomagnetic beads, and dendritic cells were generated by culture in the presence of GM-CSF, TNF- and hSCF for 5 days. Immature CD83 CD86low dendritic cells were added to human dermal microvascular endothelial cells grown to confluence on membrane chambers. After 2 h, unbound dendritic cell precursors were removed, and bound cells were prepared for routine scanning electron microscopy. We found that (1) dendritic cell precursors firmly adhere to microvascular endothelial cells, enveloping them with their surface processes; (2) dendritic cell precursors are extremely deformable as they squeeze through the dense network of microvascular endothelial cells; (3) microvascular endothelial cells form, in part, a multi-layered network rather than the typical cobblestone pattern as seen by phase-contrast microscopy. The morphology of dendritic cell precursors and of human dermal microvascular endothelial cells was examined here, for the first time, by scanning electron microscopy. These data further emphasize that CD34+-derived dendritic cells efficiently adhere to dermal microvascular endothelial cells.  相似文献   

2.

Background

Loss of the pulmonary microvasculature in the pathogenesis of emphysema has been put forward as a credible alternative to the classical inflammatory cell driven proteolysis hypothesis. Mechanistic studies in this area have to date employed animal models, immortalised cell lines, primary endothelial cells isolated from large pulmonary arteries and non-pulmonary tissues and normal human pulmonary microvascular endothelial cells. Although these studies have increased our understanding of endothelial cell function, their relevance to mechanisms in emphysema is questionable. Here we report a successful technique to isolate and characterise primary cultures of pulmonary microvascular endothelial cells from individuals with severe emphysema.

Methods

A lobe of emphysematous lung tissue removed at the time of lung transplantation surgery was obtained from 14 patients with severe end-stage disease. The pleura, large airways and large blood vessels were excised and contaminating macrophages and neutrophils flushed from the peripheral lung tissue before digestion with collagenase. Endothelial cells were purified from the cell mixture via selection with CD31 and UEA-1 magnetic beads and characterised by confocal microscopy and flow cytometry.

Results

Successful isolation was achieved from 10 (71%) of 14 emphysematous lungs. Endothelial cells exhibited a classical cobblestone morphology with high expression of endothelial cell markers (CD31) and low expression of mesenchymal markers (CD90, αSMA and fibronectin). E-selectin (CD62E) was inducible in a proportion of the endothelial cells following stimulation with TNFα, confirming that these cells were of microvascular origin.

Conclusions

Emphysematous lungs removed at the time of transplantation can yield large numbers of pulmonary microvasculature endothelial cells of high purity. These cells provide a valuable research tool to investigate cellular mechanisms in the pulmonary microvasculature relevant to the pathogenesis of emphysema.  相似文献   

3.
Beside functional and structural changes in vascular biology, alterations in the rheologic properties of blood cells mainly determines to an impaired microvascular blood flow in patients suffering from diabetes mellitus. Recent investigations provide increasing evidence that impaired C-peptide secretion in type 1 diabetic patients might contribute to the development of microvascular complications. C-peptide has been shown to stimulate endothelial NO secretion by activation of the Ca2+ calmodolin regulated enzyme eNOS. NO himself has the potency to increase cGMP levels in smooth muscle cells and to activate Na+ K+ ATPase activity and therefore evolves numerous effects in microvascular regulation. In type 1 diabetic patients, supplementation of C-peptide was shown to improve endothelium dependent vasodilatation in an NO-dependent pathway in different vascular compartments. In addition, it could be shown that C-peptide administration in type 1 diabetic patients, results in a redistribution of skin blood flow by increasing nutritive capillary blood flow in favour to subpapillary blood flow. Impaired Na+ K+ ATPase in another feature of diabetes mellitus in many cell types and is believed to be a pivotal regulator of various cell functions. C-peptide supplementation has been shown to restore Na+ K+ATPase activity in different cell types during in vitro and in vivo investigations. In type 1 diabetic patients, C-peptide supplementation was shown to increase erythrocyte Na+ K+ATPase activity by about 100%. There was found a linear relationship between plasma C-peptide levels and erythrocyte Na+ K+ATPase activity. In small capillaries, microvascular blood flow is increasingly determined by the rheologic properties of erythrocytes. Using laser-diffractoscopie a huge improvement in erythrocyte deformability could be observed after C-peptide administration in erythrocytes of type 1 diabetic patients. Inhibition of the Na+ K+ATPase by Obain completely abolished the effect of C-peptide on erythrocyte deformability. In conclusion, C-peptide improves microvascular function and blood flow in type 1 diabetic patients by interfering with vascular and rheological components of microvascular blood flow.  相似文献   

4.

Background

The effect of exercise-induced lactate production on red blood cell deformability and other blood rheological changes is controversial, given heavy-exercise induces biochemical processes (e.g., oxidative stress) known to perturb haemorheology. The aim of the present study was to examine the haemorheological response to a short-duration cycling protocol designed to increase blood lactate concentration, but of duration insufficient to induce significant oxidative stress.

Methods

Male cyclists and triathletes (n = 6; 27±7 yr; body mass index: 23.7±3.0 kg/m2; peak oxygen uptake 4.02±0.51 L/min) performed unloaded (0 W), moderate-intensity, and heavy-intensity cycling. Blood was sampled at rest and during the final minute of each cycling bout. Blood chemistry, blood viscosity, red blood cell aggregation and red blood cell deformability were measured.

Results

Blood lactate concentration increased significantly during heavy-intensity cycling, when compared with all other conditions. Methaemoglobin fraction did not change during any exercise bout when compared with rest. Blood viscosity at native haematocrit increased during heavy-intensity cycling at higher-shear rates when compared with rest, unloaded and moderate-intensity cycling. Heavy-intensity exercise increased the amplitude of red blood cell aggregation in native haematocrit samples when compared with all other conditions. Red blood cell deformability was not changed by exercise.

Conclusion

Acute exercise perturbs haemorheology in an intensity dose-response fashion; however, many of the haemorheological effects appear to be secondary to haemoconcentration, rather than increased lactate concentration.  相似文献   

5.
Endothelial cells lining blood vessels are exposed to various hemodynamic forces associated with blood flow. These include fluid shear, the tangential force derived from the friction of blood flowing across the luminal cell surface, tensile stress due to deformation of the vessel wall by transvascular flow, and normal stress caused by the hydrodynamic pressure differential across the vessel wall. While it is well known that these fluid forces induce changes in endothelial morphology, cytoskeletal remodeling, and altered gene expression, the effect of flow on endothelial organization within the context of the tumor microenvironment is largely unknown. Using a previously established microfluidic tumor vascular model, the objective of this study was to investigate the effect of normal (4 dyn/cm2), low (1 dyn/cm2), and high (10 dyn/cm2) microvascular wall shear stress (WSS) on tumor-endothelial paracrine signaling associated with angiogenesis. It is hypothesized that high WSS will alter the endothelial phenotype such that vascular permeability and tumor-expressed angiogenic factors are reduced. Results demonstrate that endothelial permeability decreases as a function of increasing WSS, while co-culture with tumor cells increases permeability relative to mono-cultures. This response is likely due to shear stress-mediated endothelial cell alignment and tumor-VEGF-induced permeability. In addition, gene expression analysis revealed that high WSS (10 dyn/cm2) significantly down-regulates tumor-expressed MMP9, HIF1, VEGFA, ANG1, and ANG2, all of which are important factors implicated in tumor angiogenesis. This result was not observed in tumor mono-cultures or static conditioned media experiments, suggesting a flow-mediated paracrine signaling mechanism exists with surrounding tumor cells that elicits a change in expression of angiogenic factors. Findings from this work have significant implications regarding low blood velocities commonly seen in the tumor vasculature, suggesting high shear stress-regulation of angiogenic activity is lacking in many vessels, thereby driving tumor angiogenesis.  相似文献   

6.
Microfluidic technologies enable in vitro studies to closely simulate in vivo microvessel environment with complexity. Such method overcomes certain constrains of the statically cultured endothelial monolayers and enables the cells grow under physiological range of shear flow with geometry similar to microvessels in vivo. However, there are still existing knowledge gaps and lack of convincing evidence to demonstrate and quantify key biological features of the microfluidic microvessels. In this paper, using advanced micromanufacturing and microfluidic technologies, we presented an engineered microvessel model that mimicked the dimensions and network structures of in vivo microvessels with a long-term and continuous perfusion capability, as well as high-resolution and real-time imaging capability. Through direct comparisons with studies conducted in intact microvessels, our results demonstrated that the cultured microvessels formed under perfused conditions recapitulated certain key features of the microvessels in vivo. In particular, primary human umbilical vein endothelial cells were successfully cultured the entire inner surfaces of the microchannel network with well-developed junctions indicated by VE-cadherin staining. The morphological and proliferative responses of endothelial cells to shear stresses were quantified under different flow conditions which was simulated with three-dimensional shear dependent numerical flow model. Furthermore, we successfully measured agonist-induced changes in intracellular Ca2+ concentration and nitric oxide production at individual endothelial cell levels using fluorescence imaging. The results were comparable to those derived from individually perfused intact venules. With in vivo validation of its functionalities, our microfluidic model demonstrates a great potential for biological applications and bridges the gaps between in vitro and in vivo microvascular research.  相似文献   

7.
The microcirculation state was assessed in the group of patients with ischemic stroke (n = 30) and the control group of healthy individuals (n = 27) using laser Doppler flowmetry and the wavelet analysis of the amplitude-frequency range of microvascular blood flow oscillations combined with absorption spectroscopy. The hemorheological parameters (blood and plasma viscosity, the degree of red blood cell aggregability and deformability) were assessed in both groups, as were their correlations with the microcirculation parameters. Decreased tissue perfusion (by 25%) and specific oxygen consumption (by 21%) were revealed in a cerebrovascular accident. Changes in the tone-forming regulatory mechanisms of microcirculation of vasodilating nature (decreased microvascular tone, activation of the secretory function of endothelium) may be regarded as a compensatory reaction aimed at maintaining the blood supply of organs and tissues in stroke. The blood viscosity increase in patients due to the plasma viscosity increase and increased red blood cell aggregability and their decreased deformability cause the blood flow to slow down and the wall shear stress to increase, which activates the endothelial secretory function and vasodilation of microvessels. Correlation between the rheological parameters and the passive (respiratory and cardiac) rhythm amplitudes was observed in the control group. In patients, the hemorheological parameters were correlated with the characteristics of the active factors of microvascular blood flow modulation (endothelial, neurogenic, and myogenic), which confirms the role of changed blood properties and regulatory tone-forming mechanisms in the maintenance of tissue perfusion in cerbrovascular accidents.  相似文献   

8.

Introduction

Given the severity of the current imbalance between blood donor supply and recipient demand, discarded blood drawn from the routine venesections of haemochromatosis (HFE-HH) patients may serve as a valuable alternative source for blood banks and transfusion. We investigated whether functional or biochemical differences existed between HFE-HH and control blood samples, with particular focus upon the haemorheological properties, to investigate the viability of venesected blood being subsequently harvested for blood products.

Methods

Blood samples were collected from HFE-HH patients undergoing venesection treatment (n = 19) and healthy volunteers (n = 8). Moreover, a second experiment investigated the effects of a dose-response of iron (0, 40, 80, 320 mM FeCl3) on haemorheology in healthy blood samples (n = 7). Dependent variables included basic haematology, iron status, haematocrit, red blood cell (RBC) aggregation (native and standardised haematocrit) and “aggregability” (RBC tendency to aggregate in a standard aggregating medium; 0.4 L/L haematocrit in a Dx70), and RBC deformability.

Results

Indices of RBC deformability were significantly decreased for HFE-HH when compared with healthy controls: RBC deformability was significantly decreased at 1–7 Pa (p < 0.05), and the shear stress required for half maximal deformability was significantly increased (p < 0.05) for HFE-HH. RBC aggregation in plasma was significantly increased (p < 0.001) for HFE-HH, although when RBC were suspended in plasma-free Dx70 no differences were detected. No differences in RBC deformability or RBC aggregation/aggregability were detected when healthy RBC were incubated with varying dose of FeCl3.

Conclusion

HFE-HH impairs the haemorheological properties of blood; however, RBC aggregability was similar between HFE-HH and controls when cells were suspended in a plasma-free medium, indicating that plasma factor(s) may explain the altered haemorheology in HFE-HH patients. Acute exposure to elevated iron levels does not appear (in isolation) to account for these differences. Further consideration is required prior to utilising routine venesection blood for harvesting RBC concentrates due to the potential risk of microvascular disorders arising from impaired haemorheology.  相似文献   

9.
A unifying hypothesis for the genesis of cerebral malaria proposes that parasite antigens (released by replication in blood, surface molecules on parasitized erythrocytes, or merozoites) activate platelets that, in turn, contribute to the activation of the inflammatory response and increased levels of endothelial cell adhesion molecules (eCAMs). Increased levels of eCAMs result in further parasitized-erythrocyte sequestration and marked local inflammation that might disrupt the brain microvasculature, which cannot be repaired by the hemostasis system because of its procoagulant state. Disruption of the brain microvasculature can result in vascular leak and/or hemorrhaging into the brain; similar processes can occur in other vascular beds, including the lung. The blockage of functional capillaries by parasitized and/or unparasitized erythrocytes with decreased deformability or rosettes is also a key interaction between hemostasis and mechanical obstruction leading to pathogenesis. The events resulting in the development of cerebral malaria complications are multi-factorial, encompassing a dynamic interaction between three processes, thereby explaining the complexity of this deadly syndrome.  相似文献   

10.
This study examined the effect of dextran-induced RBC aggregation on the venular flow in microvasculature. We utilized the laser speckle contrast imaging (LSCI) as a wide-field imaging technique to visualize the flow distribution in venules influenced by abnormally elevated levels of RBC aggregation at a network-scale level, which was unprecedented in previous studies. RBC aggregation in rats was induced by infusing Dextran 500. To elucidate the impact of RBC aggregation on microvascular perfusion, blood flow in the venular network of a rat cremaster muscle was analyzed with a stepwise reduction of the arterial pressure (100 → 30 mmHg). The LSCI analysis revealed a substantial decrease in the functional vascular density after the infusion of dextran. The relative decrease in flow velocity after dextran infusion was notably pronounced at low arterial pressures. Whole blood viscosity measurements implied that the reduction in venular flow with dextran infusion could be due to the elevation of medium viscosity in high shear conditions (> 45 s-1). In contrast, further augmentation to the flow reduction at low arterial pressures could be attributed to the formation of RBC aggregates (< 45 s-1). This study confirmed that RBC aggregation could play a dominant role in modulating microvascular perfusion, particularly in the venular networks.  相似文献   

11.
12.
13.
Rüffer C  Strey A  Janning A  Kim KS  Gerke V 《Biochemistry》2004,43(18):5360-5369
Endothelial cell-cell contacts control the vascular permeability, thereby regulating the flow of solutes, macromolecules, and leukocytes between blood vessels and interstitial space. Because of specific needs, the endothelial permeability differs significantly between the tight blood-brain barrier endothelium and the more permeable endothelial lining of the non-brain microvasculature. Most likely, such differences are due to a differing architecture of the respective interendothelial cell contacts. However, while the molecules and junctional complexes of macrovascular endothelial cells and the blood-brain barrier endothelium are fairly well characterized, much less is known about the organization of intercellular contacts of microvascular endothelium. Toward this end, we developed a combined cross-linking and immunoprecipitation protocol which enabled us to map nearest neighbor interactions of junctional proteins in the human dermal microvascular endothelial cell line HMEC-1. We show that proteins typically located in tight or adherens junctions of epithelial cells are in the proximity in HMEC-1 cells. This contrasts with the separation of the different types of junctions observed in polarized epithelial cells and "tight" endothelial layers of the blood-brain barrier and argues for a need of the specific junctional contacts in microvascular endothelium possibly required to support an efficient transendothelial migration of leukocytes.  相似文献   

14.
The relationships between the red blood cell (RBC) membrane elasticity and RBC aggregation in healthy individuals and in patients with anemia of malignant tumors treated with human erythropoietin drug epoetin alfa (EA) were analyzed. It was found that prior to the treatment of patients, incubation of RBCs with EA was accompanied by an increase of RBC deformability and the reduction of their aggregation (RBCA). In these circumstances the two characteristics of the RBC microrheology correlated negatively with each other (r =–0.734, p < 0.05). In contrast, aggregation and deformability of RBCs from healthy individuals increased under the influence of EA and positively correlated with each other (r = 0.580, p < 0.05). After a 4-week treatment of patients with EA, aggregation response of the patients’ RBCs was increased by 29% (p < 0.05) and was close to that of healthy RBCs. This change of the RBC aggregation response may be connected with an alteration of the sensitivity of the membrane cationic channel to EA and an increase of the cell deformability. This possibility was supported by experiments with the use of Ca2+-channel blocker verapamil and Ca2+-chelating agent EDTA. Under these conditions a decrease of the RBC aggregation varied from 40 to 50% (p < 0.05). It was suggested that the effectors of calcium regulatory cascade upon exposure to EA may be membrane integrin receptors of type IIb–IIIa. This assumption was confirmed by experiments employing the inhibitors of these receptors (tirofibam and integrelin) and a preparation of monoclonal antibodies against IIb–IIIa receptors (monafram), which produced a significant decrease (20–30%, p < 0.05) of the RBC aggregation. Thus, our findings suggest that the altered aggregation response of RBCs in anemic patients with malignant tumors can be restored by the correction of anemia with epoetin alfa.  相似文献   

15.

Background

Nitric oxide (NO) produced by nitric oxide synthase (NOS) in human red blood cells (RBCs) was shown to depend on shear stress and to exhibit important biological functions, such as inhibition of platelet activation. In the present study we hypothesized that exercise-induced shear stress stimulates RBC-NOS activation pathways, NO signaling, and deformability of human RBCs.

Methods/Findings

Fifteen male subjects conducted an exercise test with venous blood sampling before and after running on a treadmill for 1 hour. Immunohistochemical staining as well as western blot analysis were used to determine phosphorylation and thus activation of Akt kinase and RBC-NOS as well as accumulation of cyclic guanylyl monophosphate (cGMP) induced by the intervention. The data revealed that activation of NO upstream located enzyme Akt kinase was significantly increased after the test. Phosphorylation of RBC-NOSSer1177 was also significantly increased after exercise, indicating activation of RBC-NOS through Akt kinase. Total detectable RBC-NOS content and phosphorylation of RBC-NOSThr495 were not affected by the intervention. NO production by RBCs, determined by DAF fluorometry, and RBC deformability, measured via laser-assisted-optical-rotational red cell analyzer, were also significantly increased after the exercise test. The content of the NO downstream signaling molecule cGMP increased after the test. Pharmacological inhibition of phosphatidylinositol 3 (PI3)-kinase/Akt kinase pathway led to a decrease in RBC-NOS activation, NO production and RBC deformability.

Conclusion/Significance

This human in vivo study first-time provides strong evidence that exercise-induced shear stress stimuli activate RBC-NOS via the PI3-kinase/Akt kinase pathway. Actively RBC-NOS-produced NO in human RBCs is critical to maintain RBC deformability. Our data gain insights into human RBC-NOS regulation by exercise and, therefore, will stimulate new therapeutic exercise-based approaches for patients with microvascular disorders.  相似文献   

16.
Cerebral amyloid angiopathy (CAA) is a disease in which amyloid β (Aβ) is deposited on the walls of blood vessels in the brain, making those walls brittle and causing cerebral hemorrhage. However, the mechanism underlying its onset is not well understood. The aggregation and accumulation of Aβ cause the occlusion and fragility of blood vessels due to endothelial cell damage, breakdown of the blood-brain barrier, and replacement with elements constituting the blood vessel wall. In this study, we observed the effect of Aβ on human primary brain microvascular endothelial cells (hBMECs) in real-time using quantum dot nanoprobes to elucidate the mechanism of vascular weakening by Aβ. It was observed that Aβ began to aggregate around hBMECs after the start of incubation and that the cells were covered with aggregates. Aβ aggregates firmly anchored the cells on the plate surface, and eventually suppressed cell motility and caused cell death. Furthermore, Aβ aggregation induced the organization of abnormal actin, resulting in a significant increase in intracellular actin dots over 10 μm2. These results suggest that the mechanism by which Aβ forms a fragile vessel wall is as follows: Aβ aggregation around vascular endothelial cells anchors them to the substrate, induces abnormal actin organization, and leads to cell death.  相似文献   

17.
The human circulatory system is a marvelous fluidic system, which is very sensitive to biophysical and biochemical cues. The current animal and cell culture models do not recapitulate the functional properties of the human circulatory system, limiting our ability to fully understand the complex biological processes underlying the dysfunction of this multifaceted system. In this review, we discuss the unique ability of microfluidic systems to recapitulate the biophysical, biochemical, and functional properties of the human circulatory system. We also describe the remarkable capacity of microfluidic technologies for exploring the complex mechanobiology of the cardiovascular system, mechanistic studying of cardiovascular diseases, and screening cardiovascular drugs with the additional benefit of reducing the need for animal models. We also discuss opportunities for further advancement in this exciting field.  相似文献   

18.
Platelet aggregation plays a central role in pathological thrombosis, preventing healthy physiological blood flow within the circulatory system. For decades, it was believed that platelet aggregation was primarily driven by soluble agonists such as thrombin, adenosine diphosphate and thromboxane A2. However, recent experimental findings have unveiled an intriguing but complementary biomechanical mechanism—the shear rate gradients generated from flow disturbance occurring at sites of blood vessel narrowing, otherwise known as stenosis, may rapidly trigger platelet recruitment and subsequent aggregation. In our Nature Materials 2019 paper [1], we employed microfluidic devices which incorporated micro-scale stenoses to elucidate the molecular insights underlying the prothrombotic effect of blood flow disturbance. Nevertheless, the rheological mechanisms associated with this stenotic microfluidic device are poorly characterized. To this end, we developed a computational fluid dynamics (CFD) simulation approach to systematically analyze the hemodynamic influence of bulk flow mechanics and flow medium. Grid sensitivity studies were performed to ensure accurate and reliable results. Interestingly, the peak shear rate was significantly reduced with the device thickness, suggesting that fabrication of microfluidic devices should retain thicknesses greater than 50 µm to avoid unexpected hemodynamic aberration, despite thicker devices raising the cost of materials and processing time of photolithography. Overall, as many groups in the field have designed microfluidic devices to recapitulate the effect of shear rate gradients and investigate platelet aggregation, our numerical simulation study serves as a guideline for rigorous design and fabrication of microfluidic thrombosis models.  相似文献   

19.
Pericyte and vascular smooth muscle cell (SMC) recruitment to the developing vasculature is an important step in blood vessel maturation. Brain-derived neurotrophic factor (BDNF), expressed by endothelial cells, activates the receptor tyrosine kinase TrkB to stabilize the cardiac microvasculature in the perinatal period. However, the effects of the BDNF/TrkB signaling on pericytes/SMCs and the mechanisms downstream of TrkB that promote vessel maturation are unknown. To confirm the involvement of TrkB in vessel maturation, we evaluated TrkB deficient (trkb −/−) embryos and observed severe cardiac vascular abnormalities leading to lethality in late gestation to early prenatal life. Ultrastructural analysis demonstrates that trkb−/− embryos exhibit defects in endothelial cell integrity and perivascular edema. As TrkB is selectively expressed by pericytes and SMCs in the developing cardiac vasculature, we generated mice deficient in TrkB in these cells. Mice with TrkB deficiency in perivascular cells exhibit reduced pericyte/SMC coverage of the cardiac microvasculature, abnormal endothelial cell ultrastructure, and increased vascular permeability. To dissect biological actions and the signaling pathways downstream of TrkB in pericytes/SMCs, human umbilical SMCs were treated with BDNF. This induced membranous protrusions and cell migration, events dependent on myosin light chain phosphorylation. Moreover, inhibition of Rho GTPase and the Rho-associated protein kinase (ROCK) prevented membrane protrusion and myosin light chain phosphorylation in response to BDNF. These results suggest an important role for BDNF in regulating migration of TrkB-expressing pericytes/SMCs to promote cardiac blood vessel ensheathment and functional integrity during development.  相似文献   

20.
Summary The microvasculature of the developing brain is plastic and responds differently to the many insults associated with preterm birth. We developed three-dimensional in vitro culture models for the study of the responses of the developing cerebral micro-vasculature. Beagle brain microvascular endothelial cells (BBMEC) were isolated by differential centrifugation from newborn beagle pups on postnatal Day 1 and placed in three-dimensional culture dispersed in a collagen gel. Alternatively, BBMEC were placed in a three-dimensional coculture with neonatal rat forebrain astrocytes. Cultures were analyzed for extracellular matrix components at 1 and 6 d, and total RNA was extracted for Northern analyses. Urokinase plasminogen activator activity was assayed in both mono- and cocultures of the two cell types. Studies of three-dimensional BBMEC/astrocyte cocultures demonstrated progressive tube formation with only low levels of endothelial proliferation. By 6 d in three-dimensional coculture, the BBMEC formed capillarylike tubes with a wrapping of glial processes, and basement membrane protein synthesis was noted. Urokinase plasminogen zymography suggested intercellular signaling by the two cell types. These data suggest that the three-dimensional beagle brain germinal matrix microvascular endothelial cell/neonatal rat astrocyte coculture provides a good model for the investigation of microvascular responses in the developing brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号