共查询到7条相似文献,搜索用时 0 毫秒
1.
2.
Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development 下载免费PDF全文
Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after fertilization. To identify which histone modifications are required for early embryonic development, we utilized histone K‐M mutants, which prevent endogenous histone methylation at the mutated site. We prepared four single K‐M mutants for histone H3.3, K4M, K9M, K27M, and K36M, and demonstrate that overexpression of H3.3 K4M in embryos before fertilization results in developmental arrest, whereas overexpression after fertilization does not affect the development. Furthermore, loss of H3K4 methylation decreases the level of minor zygotic gene activation (ZGA) predominantly in the paternal pronucleus, and we obtained similar results from knockdown of the H3K4 methyltransferase Mll3/4. We therefore conclude that H3K4 methylation, likely established by Mll3/4 at the early pronuclear stage, is essential for the onset of minor ZGA in the paternal pronucleus, which is necessary for subsequent preimplantation development in mice. 相似文献
3.
4.
5.
6.
Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor 总被引:3,自引:0,他引:3
Peña PV Hom RA Hung T Lin H Kuo AJ Wong RP Subach OM Champagne KS Zhao R Verkhusha VV Li G Gozani O Kutateladze TG 《Journal of molecular biology》2008,380(2):303-312
Inhibitor of growth 1 (ING1) is implicated in oncogenesis, DNA damage repair, and apoptosis. Mutations within the ING1 gene and altered expression levels of ING1 are found in multiple human cancers. Here, we show that both DNA repair and apoptotic activities of ING1 require the interaction of the C-terminal plant homeodomain (PHD) finger with histone H3 trimethylated at Lys4 (H3K4me3). The ING1 PHD finger recognizes methylated H3K4 but not other histone modifications as revealed by the peptide microarrays. The molecular mechanism of the histone recognition is elucidated based on a 2.1 Å-resolution crystal structure of the PHD-H3K4me3 complex. The K4me3 occupies a deep hydrophobic pocket formed by the conserved Y212 and W235 residues that make cation-π contacts with the trimethylammonium group. Both aromatic residues are essential in the H3K4me3 recognition, as substitution of these residues with Ala disrupts the interaction. Unlike the wild-type ING1, the W235A mutant, overexpressed in the stable clones of melanoma cells or in HT1080 cells, was unable to stimulate DNA repair after UV irradiation or promote DNA-damage-induced apoptosis, indicating that H3K4me3 binding is necessary for these biological functions of ING1. Furthermore, N216S, V218I, and G221V mutations, found in human malignances, impair the ability of ING1 to associate with H3K4me3 or to induce nucleotide repair and cell death, linking the tumorigenic activity of ING1 with epigenetic regulation. Together, our findings reveal the critical role of the H3K4me3 interaction in mediating cellular responses to genotoxic stresses and offer new insight into the molecular mechanism underlying the tumor suppressive activity of ING1. 相似文献
7.
M. Xydous K.E. Sekeri-Pataryas A. Prombona T.G. Sourlingas 《Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms》2012,1819(8):877-884
Circadian rhythms, which measure time on a scale of 24 h, are generated by one of the most ubiquitous endogenous mechanisms, the circadian clock. SIRT1, a class III histone deacetylase, and PARP-1, a poly(ADP-ribose) polymerase, are two NAD+-dependent enzymes that have been shown to be involved in the regulation of the clock. Here we present evidence that the metabolite nicotinamide, an inhibitor of SIRT1, PARP-1 and mono(ADP-ribosyl) transferases, blocks the ability of dexamethasone to induce the acute response of the circadian clock gene, mper1, while it concomitantly reduces the levels of histone H3 trimethylation of lysine 4 (H3K4me3) in the mper1 promoter. Moreover, application of alternative inhibitors of SIRT1 and ADP-ribosylation did not lead to similar results. Therefore, inhibition of these enzymes does not seem to be the mode by which NAM exerts these effects. These results suggest the presence of a novel mechanism, not previously documented, by which NAM can alter gene expression levels via changes in the histone H3K4 trimethylation state. 相似文献