首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shabala S  Cuin TA  Prismall L  Nemchinov LG 《Planta》2007,227(1):189-197
Apoptosis, one form of programmed cell death (PCD), plays an important role in mediating plant adaptive responses to the environment. Recent studies suggest that expression of animal anti-apoptotic genes in transgenic plants may significantly improve a plant’s ability to tolerate a variety of biotic and abiotic stresses. The underlying cellular mechanisms of this process remain unexplored. In this study, we investigated specific ion flux “signatures” in Nicotiana benthamiana plants transiently expressing CED-9 anti-apoptotic gene and undergoing salt- and oxidative stresses. Using a range of electrophysiological techniques, we show that expression of CED-9 increased plant salt and oxidative stress tolerance by altering K+ and H+ flux patterns across the plasma membrane. Our data shows that PVX/CED-9 plants are capable of preventing stress-induced K+ efflux from mesophyll cells, so maintaining intracellular K+ homeostasis. We attribute these effects to the ability of CED-9 to control at least two types of K+-permeable channels; outward-rectifying depolarization-activating K+ channels (KOR) and non-selective cation channels (NSCC). A possible scenario linking CED-9 expression and ionic relations in plant cell is suggested. To the best of our knowledge, this study is the first to link “ion flux signatures” and mechanisms involved in regulation of PCD in plants.  相似文献   

2.
Oligochitosan has been proved to trigger plant cell death. To gain some insights into the mechanisms of oligochitosan-induced cell death, the nature of oligochitosan-induced cell death and the role of calcium (Ca2+), nitric oxide (NO) and hydrogen peroxide (H2O2) were studied in tobacco suspension cells. Oligochitosan-induced cell death occurred in cytoplasmic shrinkage, phosphatidylserine externalization, chromatin condensation, TUNEL-positive nuclei, cytochrome c release and induction of programmed cell death (PCD)-related gene hsr203J, suggesting the activation of PCD pathway. Pretreatment cells with cyclosporin A, resulted in reducing oligochitosan-induced cytochrome c release and cell death, indicating oligochitosan-induced PCD was mediated by cytochrome c. In the early stage, cells undergoing PCD showed an immediate burst in free cytosolic Ca2+ ([Ca2+]cyt) elevation, NO and H2O2 production. Further study showed that these three signals were involved in oligochitosan-induced PCD, while Ca2+ and NO played a negative role in this process by modulating cytochrome c release.  相似文献   

3.
He S  Tan G  Liu Q  Huang K  Ren J  Zhang X  Yu X  Huang P  An C 《PloS one》2011,6(4):e18750

Background

Hypersensitive cell death, a form of avirulent pathogen-induced programmed cell death (PCD), is one of the most efficient plant innate immunity. However, its regulatory mechanism is poorly understood. AtLSD1 is an important negative regulator of PCD and only two proteins, AtbZIP10 and AtMC1, have been reported to interact with AtLSD1.

Methodology/Principal Findings

To identify a novel regulator of hypersensitive cell death, we investigate the possible role of plant LITAF domain protein GILP in hypersensitive cell death. Subcellular localization analysis showed that AtGILP is localized in the plasma membrane and its plasma membrane localization is dependent on its LITAF domain. Yeast two-hybrid and pull-down assays demonstrated that AtGILP interacts with AtLSD1. Pull-down assays showed that both the N-terminal and the C-terminal domains of AtGILP are sufficient for interactions with AtLSD1 and that the N-terminal domain of AtLSD1 is involved in the interaction with AtGILP. Real-time PCR analysis showed that AtGILP expression is up-regulated by the avirulent pathogen Pseudomonas syringae pv. tomato DC3000 avrRpt2 (Pst avrRpt2) and fumonisin B1 (FB1) that trigger PCD. Compared with wild-type plants, transgenic plants overexpressing AtGILP exhibited significantly less cell death when inoculated with Pst avrRpt2, indicating that AtGILP negatively regulates hypersensitive cell death.

Conclusions/Significance

These results suggest that the LITAF domain protein AtGILP localizes in the plasma membrane, interacts with AtLSD1, and is involved in negatively regulating PCD. We propose that AtGILP functions as a membrane anchor, bringing other regulators of PCD, such as AtLSD1, to the plasma membrane. Human LITAF domain protein may be involved in the regulation of PCD, suggesting the evolutionarily conserved function of LITAF domain proteins in the regulation of PCD.  相似文献   

4.
Fusaric acid (FA) is a nonhost-selective toxin mainly produced by Fusarium oxysporum, the causal agent of plant wilt diseases. We demonstrate that FA can induce programmed cell death (PCD) in tobacco suspension cells and the FA-induced PCD is modulated by nitric oxide (NO) signalling. Cells undergoing cell death induced by FA treatment exhibited typical characteristics of PCD including cytoplasmic shrinkage, chromatin condensation, DNA fragmentation, membrane plasmolysis, and formation of small cytoplasmic vacuoles. In addition, caspase-3-like activity was activated upon the FA treatment. The process of FA-induced PCD was accompanied by a rapid accumulation of NO in a FA dose-dependent manner. Pre-treatment of cells with NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) or NO synthase inhibitor N G-monomethyl-arginine monoacetate (L-NMMA) significantly reduced the rate of FA-induced cell death. Furthermore, the caspase-3-like activity and the expression of PAL and Hsr203J genes were alleviated by application of cPTIO or L-NMMA to FA-treated tobacco cells. This indicates that NO is an important factor involved in the FA-induced PCD. Our results also show that pre-treatment of tobacco cells with a caspase-3-specific inhibitor, Ac-DEVD-CHO, can reduce the rate of FA-induced cell death. These results demonstrate that the FA-induced cell death is a PCD and is modulated by NO signalling through caspase-3-like activation.  相似文献   

5.
6.
As a vital cell-signaling molecule, nitric oxide (NO) has been reported to regulate toxic metal responses in plants. Our recent report has suggested that caspase-3-like protease activation was detected in Arabidopsis (Arabidopsis thaliana) after Cd2+ treatment. NO contributed caspase-3-like protease activation in Cd2+ induced Arabidopsis thaliana programmed cell death (PCD), which was mediated by MPK6. It was first shown that NO promotes Cd2+-induced Arabidopsis PCD by promoting MPK6-mediated caspase-3-like activation. Our study contributed to the understanding of NO signaling pathway in Cd2+-induced Arabidopsis thaliana PCD. Although several studies have revealed that NO regulates plant PCD, compared with the study of signaling pathways involved in animal cell apoptosis, the mechanism of NO function still remains elusive and the molecular mechanisms of MAPK are far from clear in Cd2+-induced PCD. By using the fluorescence techniques and the Arabidopsis seedlings as the reference model, the subsequent researches have been performed to obtain comprehensive understanding of Cd2+-induced plant PCD.  相似文献   

7.
8.
Ubiquinone or plastoquinone covalently linked to synthetic decyltriphenylphosphonium (DTPP+) or rhodamine cations prevent programmed cell death (PCD) in pea leaf epidermis induced by chitosan or CN. PCD was monitored by recording the destruction of cell nuclei. CN induced the destruction of nuclei in both epidermal cells (EC) and guard cells (GC), whereas chitosan destroyed nuclei in EC not in GC. The half-maximum concentrations for the protective effects of the quinone derivatives were within the pico- and nanomolar range. The protective effect of the quinones was removed by a protonophoric uncoupler and reduced by tetraphenylphosphonium cations. CN-Induced PCD was accelerated by the tested quinone derivatives at concentrations above 10−8–10−7 M. Unlike plastoquinone linked to the rhodamine cation (SkQR1), DTPP+ derivatives of quinones suppressed menadione-induced H2O2 generation in the cells. The CN-induced destruction of GC nuclei was prevented by DTPP+ derivatives in the dark not in the light. SkQR1 inhibited this process both in the dark and in the light, and its effect in the light was similar to that of rhodamine 6G. The data on the protective effect of cationic quinone derivatives indicate that mitochondria are involved in PCD in plants.  相似文献   

9.
The present work reports changes in bioenergetic parameters and mitochondrial activities during the manifestation of two events of programmed cell death (PCD), linked to Abies alba somatic embryogenesis. PCD, evidenced by in situ nuclear DNA fragmentation (TUNEL assay), DNA laddering and cytochrome c release, was decreased in maturing embryogenic tissue with respect to the proliferation stage. In addition, the major cellular energetic metabolites (ATP, NAD(P)H and glucose-6-phosphate) were highered during maturation. The main mitochondrial activities changed during two developmental stages. Mitochondria, isolated from maturing, with respect to proliferating cell masses, showed an increased activity of the alternative oxidase, external NADH dehydrogenase and fatty-acid mediated uncoupling. Conversely, a significant decrease of the mitochondrial KATP+ channel activity was observed. These results suggest a correlation between mitochondrial activities and the manifestation of PCD during the development of somatic embryos. In particular, it is suggested that the KATP+ channel activity could induce an entry of K+ into the matrix, followed by swelling and a release of cytochrome c during proliferation, whereas the alternative pathways, acting as anti-apoptotic factors, may partially counteract PCD events occurring during maturation of somatic embryos.  相似文献   

10.
Programmed cell death (PCD) occurs in adults to maintain normal tissue homeostasis and during embryological development to shape tissues and organs1,2,6,7. During development, toxic chemicals or genetic alterations can cause an increase in PCD or change PCD patterns resulting in developmental abnormalities and birth defects3-5. To understand the etiology of these defects, the study of embryos can be complemented with in vitro assays that use differentiating embryonic stem (ES) cells.Apoptosis is a well-studied form of PCD that involves both intrinsic and extrinsic signaling to activate the caspase enzyme cascade. Characteristic cell changes include membrane blebbing, nuclear shrinking, and DNA fragmentation. Other forms of PCD do not involve caspase activation and may be the end-result of prolonged autophagy. Regardless of the PCD pathway, dying cells need to be removed. In adults, the immune cells perform this function, while in embryos, where the immune system has not yet developed, removal occurs by an alternative mechanism. This mechanism involves neighboring cells (called "non-professional phagocytes") taking on a phagocytic role-they recognize the ''eat me'' signal on the surface of the dying cell and engulf it8-10. After engulfment, the debris is brought to the lysosome for degradation. Thus regardless of PCD mechanism, an increase in lysosomal activity can be correlated with increased cell death.To study PCD, a simple assay to visualize lysosomes in thick tissues and multilayer differentiating cultures can be useful. LysoTracker dye is a highly soluble small molecule that is retained in acidic subcellular compartments such as the lysosome11-13. The dye is taken up by diffusion and through the circulation. Since penetration is not a hindrance, visualization of PCD in thick tissues and multi-layer cultures is possible12,13. In contrast, TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) analysis14, is limited to small samples, histological sections, and monolayer cultures because the procedure requires the entry/permeability of a terminal transferase.In contrast to Aniline blue, which diffuses and is dissolved by solvents, LysoTracker Red DND-99 is fixable, bright, and stable. Staining can be visualized with standard fluorescent or confocal microscopy in whole-mount or section using aqueous or solvent-based mounting media12,13. Here we describe protocols using this dye to look at PCD in normal and sonichedgehog null mouse embryos. In addition, we demonstrate analysis of PCD in differentiating ES cell cultures and present a simple quantification method. In summary, LysoTracker staining can be a great complement to other methods of detecting PCD.  相似文献   

11.
12.
The molecular mechanisms responsible for specifying the dorsal-ventral pattern of neuronal identities in dorsal root ganglia (DRG) are unclear. Here we demonstrate that Sonic hedgehog (Shh) contributes to patterning early DRG cells. In vitro, Shh increases both proliferation and programmed cell death (PCD). Increasing Shh in vivo enhances PCD in dorsal DRG, while inducing greater proliferation ventrally. In such animals, markers characteristic of ventral sensory neurons are expanded to more dorsal positions. Conversely, reducing Shh function results in decreased proliferation of progenitors in the ventral region and decreased expression of the ventral marker trkC. Later arising trkA+ afferents make significant pathfinding errors in animals with reduced Shh function, suggesting that accurate navigation of later arising growth cones requires either Shh itself or early arising, Shh-dependent afferents. These results indicate that Shh can regulate both cell number and the distribution of cell types in DRG, thereby playing an important role in the specification, patterning and pathfinding of sensory neurons.  相似文献   

13.
Given the importance of protein phosphorylation in the context of cellular functions, abnormal protein phosphatase activity has been implicated in several diseases, including cancer. These critical roles of protein phosphatases qualify them as potential targets for the development of medicinal compounds that possess distinct modes of action such as violacein. In this work, studies with this natural indolic pigment at a concentration of 10.0 μmol L? 1 demonstrated a 20% activation of total protein phosphatase extracted from human lymphocytes. Although no alteration was observed on protein tyrosine phosphatase (CD45), 30% of inhibition was achieved in cytoplasmatic protein phosphatase activity after incubation with 10.0 μmol L? 1 violacein. Additionally, 5.0 μmol L? 1 of violacein inhibited by 50% the serum tartrate-resistant acid phosphatase activity. Violacein presented toxic effect on lymphocytes with IC50 values of 3 and 10 μmol L? 1 for protein content and protein phosphatase activity, respectively. These findings suggest an important role for protein phosphatases in the mechanisms controlling proliferation and cell death.  相似文献   

14.
15.
Bcl-2 overexpression in transfected PW cells is associated with inhibition of radiation-induced programmed cell death (PCD). We have previously reported that there is a relationship between inhibition of radiation-induced PCD and membrane hyperpolarization in these cells. In this article, we report that Na+/K+-ATPase pump activity, as measured by the uptake of Rubidium-86 (86Rb+), is significantly higher in Bcl-2 overexpressing PW cells than in control PW cells, and that pump activity following irradiation with doses ≥ 500 cGy was reduced to a lesser extent in the Bcl-2 transfectants than in the control cells. When PW-Bcl-2 cells were incubated with a dose of ouabain (1 μM) that decreased pump activity significantly, but did not induce PCD, the previously reported protection from radiation-induced PCD associated with overexpression of Bcl-2 no longer existed. In order to demonstrate that reactive oxygen species (ROS) affected Na+/K+-ATPase pump activity, cells were incubated with N-acetyl cysteine (NAC) prior to irradiation, or treated with the ROS generating drug buthionine sulphoxamine (BSO). 86Rb+uptake was significantly higher in irradiated cells incubated with NAC compared to cells irradiated in the absence of NAC, while BSO resulted in lower levels of 86Rb+uptake, suggesting that the effects of radiation on the Na+/K+-ATPase pump were due to ROS. Furthermore, the resting cell membrane potential of cells exposed to NAC were slightly hyperpolarized compared to control PW cells, whereas cells exposed to BSO were depolarized in comparison to control PW cells. In summary, this data suggests that Bcl-2 affects Na+/K+-ATPase pump activity, which is associated with the resting membrane potential and the level of susceptibility to radiation-induced PCD. J. Cell. Physiol. 171:299–304, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
AimPoly(ADP-ribose) polymerase-1 (PARP-1) is a DNA repair enzyme, and its excessive activation, following ischemia, trauma, etc., depletes cellular nicotinamide adenine dinucleotide (NAD+) as a substrate and eventually leads to brain cell death. Nicotinamide, an NAD+ precursor and a PARP-1 inhibitor, is known to prevent PARP-1-triggered cell death, but there is no available information on the mechanisms involved in its transport. Here we clarified the transport characteristics of nicotinamide in primary cultured mouse astrocytes.Main methodsUptake characteristics of [14C]nicotinamide were assessed by a conventional method with primary cultured mouse astrocytes. Cell viability and PARP-1 activity were determined with intracellular LDH activity and immunocytochemical detection of PAR accumulation, respectively.Key findingsPARP-1 activation was induced by treatment of astrocytes with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), an alkylating agent. MNNG-triggered astrocyte death and PAR accumulation were completely inhibited by treatment with nicotinamide as with DPQ (3,4-dihydro-5-(4-(1-piperidinyl)butoxy)-1(2H)-isoquinolinone), a second generation PARP inhibitor. The uptake of [14C]nicotinamide was time-, temperature-, concentration- and pH-dependent, and was inhibited and stimulated by co- and pre-treatment with N-methylnicotinamide, a representative substrate of an organic cation transport system, respectively. Co-treatment of astrocytes with nicotinamide and N-methylnicotinamide resulted in a decrease in PAR accumulation and absolute prevention of cell death.SignificanceThese findings suggest that nicotinamide has a protective effect against PARP-1-induced astrocyte death and that its transporter-mediated uptake, which is extracellular pH-sensitive and common to N-methylnicotinamide, is critical for prevention of PARP-1-triggered cell death.  相似文献   

17.
Previous studies have reported that light is required for activating Arabidopsis programmed cell death (PCD) induced by ultraviolet-C (UV-C) overexposure, and a caspase-like protease cleaving the caspase-3 substrate Asp-Glu-Val-Asp (DEVDase activity) is induced during this process. Our recent report has suggested that a quick burst of reactive oxygen species (ROS), which is mainly derived from mitochondria and chloroplasts, is induced in a light dependent manner during the early stages of UV-induced plant PCD. Concomitantly, the mitochondria undergo serious dysfunction including the MTP loss and the changes in distribution and mobility, which ultimately lead to apoptotic-cell death. Though some of signaling molecules have been elucidated in this type of plant cell death, the molecular mechanism about UV-induce Arabidopsis PCD is still poorly understood when comparing with the study of signaling pathways involved in animal cell apoptosis induced by UV. By using the Arabidopsis mesophyll protoplasts as a reference model, we have begun to shed light on the complexity of signaling pathway in UV-induced plant PCD. Recently we have tried to real-time detect the presence of caspase-like proteolytic activation, and to sort out the key role of ROS as well as to further assess the relationship between the ROS production and caspase-like activation in this type of plant apoptotic cell death.Key words: caspase-like activation, FRET, programmed cell death, reactive oxygen species, ultraviolet-CUltraviolet-C has been shown to be a very convenient trigger to induce PCD in plants and protoplasts.1,2 Others have shown that UV induction of plant PCD requires light and that caspase-like proteolytic activation is induced in this process.1 Our recent works have shown that ROS mainly localizing in mitochondria and chloroplasts are produced in a light dependent manner during the early stages of UV stress, and that ROS production and mitochondrial dysfunction play important roles during UV-induced Arabidopsis PCD (Fig. 1).2 We also found that if the Arabidopsis plants, which were kept at light for 1 h after UV irradiation then were moved to the dark and kept for 60 h, showed no evident plant death phenomena (unpublished data), though burst of ROS has appeared after UV exposure and subsequent 1 h light irradiation.2 In contrast, seedlings developed an obvious bleaching when kept in light for 60 h after UV treatment. These findings prompt us to carry out further investigations to dig out the role of ROS in the execution of this type of cell death, and to ask whether the produced ROS in the early stages is involved in the activation of caspase-like protease.Open in a separate windowFigure 1Hypothetical model of the signal transduction pathways in the plant programmed cell death induced by UV-C overexposure. After UV and light treatment a quick burst of ROS appear in the region of mitochondria and chloroplasts, then the mitochondria undergo functional dysfunction, which ultimately leads to cell death. Caspase-like activation and nucleus damage are also involved in the control of this type cell death. Solid line means the issues have been detected. Dotted line and question marks indicate events that have not been detected in this process. For detailed explanation, see the text.It has been reported that ROS is required for the release of cytochrome c (cyt c) and subsequent activation of caspase-like proteases during heat-shock induced plant PCD, and the addition of caspase inhibitors (zVAD-fmk or AC-DEVD-CHO) can prevent the degradation of cyt c and protect the plant cells from cell death.3 Thus these findings suggest that ROS can trigger the release of cyt c, but do not cause cell death, which requires caspase-like activation.3 Conversely, caspase inhibitors have also shown to effectively block the oxidative burst and the plant cell death induced by camptothecin incubation.4 These studies suggest the complex relationship between ROS production and caspase activation during execution of plant PCD event. The ROS production and the mitochondrial dysfunction during UV-induced plant PCD have been illustrated in our research. We have suggested the occurrence of MTP disruption during UV stress; however, whether cyt c is released from mitochondria has not been assessed (Fig. 1). The important roles of cyt c release and subsequent caspase activation have been suggested in various types of programmed cell death including mammal and plant cells.3,5,6 It will be a very challenging work to detect whether cyt c is released from mitochondria and is involved in the caspase-like proteolytic activation, and to further elucidate the relationship between ROS production and caspase-like activation in UV-induced plant PCD (Fig. 1).The involvement of caspase-like proteases in the control of cell death activation in plants has been shown in various forms of plant PCD.7 Using synthetic fluorogenic caspase-3 substrate, DEVD cleavage activity was detected during UV or heat shock-induced apoptosis of plant cells, and caspase inhibitors were able to suppress these types of cell death.1,3 Caspase-like activities have also been detected in plant hypersensitive response (HR) triggered by tobacco mosaic virus (TMV), or plant PCD induced by chemicals like camptothecin.8,9 All these experiments suggest the existence of functional caspase proteolytic activity in plant cells undergoing PCD. However, most of these results are from in vitro analysis using synthetic fluorogenic substrates or synthetic peptide inhibitor to caspases, this demand us to further dig out the plant caspase encoding gene and to real-time detect the caspase-like activity in vivo.Another of our ongoing work is aiming to detect the caspase-3-like proteolytic activation in living plant cells during UV-induced plant PCD, which is achieved by using the fluorescence resonance energy transfer (FRET) technique. FRET is the phenomenon whereby a fluorescent molecule—the donor—transfers energy by a nonradiative (through space) mechanism to a neighboring chromophore - the acceptor.10 FRET as a powerful technique to monitor compartmentation and subcellular targeting as well as to visualize protein-protein interactions and proteases activity in living cells has gained increasing importance for biotechnological applications during the last few years.11 During the past few years FRET technique has been successfully used to monitor interactions and distances between molecules in living plant cells.1214 Presently, we have constructed a recombinant caspase substrate to monitor caspase-3-like protease activation in single living plant protoplast in real time. This recombinant is composed of enhanced cyan fluorescence protein (ECFP) as the FRET donor and enhanced yellow fluorescence protein (EYFP) as the acceptor, linked by peptides containing the caspase-3 cleavage sequence, DEVD (ECFP-DEVD-EYFP) as the papers demonstrated. 15 Arabidopsis mesophyll protoplasts have been successfully transiently transfected with our recombinant plasmid for expression of ECFP-DEVD-EYFP fusion proteins under control of the CaMV 35S promoter according to a modified procedure (as described previously, ref. 16). Preliminary experimental results have proved the feasibility of this method to real-time detect the caspase-like activation in living plant cells during UV-induced plant PCD.Using this FRET probe, we may real-time detect the caspase-like activation during UV-induced plant PCD, and elucidate the relationship between ROS production and caspase-like activation as well as verify our hypothesis that whether ROS is necessary for the activation of caspase-like proteases during this process. So the role of ROS in the execution of this type cell death can be further investigated. These subsequent researches will certainly increase our knowledge about the signal transduction pathways in UV-induced Arabidopsis PCD.  相似文献   

18.
19.

Background and Aims

The sexual separation in dioecious species has interested biologists for decades; however, the cellular mechanism leading to unisexuality has been poorly understood. In this study, the cellular changes that lead to male sterility in the functionally dioecious cactus, Opuntia stenopetala, are described.

Methods

The spatial and temporal patterns of programmed cell death (PCD) were determined in the anthers of male and female flowers using scanning electron microscopy analysis and histological observations, focusing attention on the transition from bisexual to unisexual development. In addition, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assays were used as an indicator of DNA fragmentation to corroborate PCD.

Key results

PCD was detected in anthers of both female and male flowers, but their patterns differed in time and space. Functionally male individuals developed viable pollen, and normal development involved PCD on each layer of the anther wall, which occurred progressively from the inner (tapetum) to the outer layer (epidermis). Conversely, functional female individuals aborted anthers by premature and displaced PCD. In anthers of female flowers, the first signs of PCD, such as a nucleus with irregular shape, fragmented and condensed chromatin, high vacuolization and condensed cytoplasm, occurred at the microspore mother cell stage. Later these features were observed simultaneously in all anther wall layers, connective tissue and filament. Neither pollen formation nor anther dehiscence was detected in female flowers of O. stenopetala due to total anther disruption.

Conclusions

Temporal and spatial changes in the patterns of PCD are responsible for male sterility of female flowers in O. stenopetala. Male fertility requires the co-ordination of different events, which, when altered, can lead to male sterility and to functionally unisexual individuals. PCD could be a widespread mechanism in the determination of functionally dioecious species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号