首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sm proteins are a group of ubiquitous ring-shaped oligomers that function in multiple aspects of RNA metabolism. However, until this study, no comprehensive study incorporating phylogeny, chromosomal location, gene organization, adaptive evolution, expression profiling and functional networks has been reported for rice and maize. In this study, twenty-five and thirty-three Sm genes have been identified in rice and maize, respectively. Phylogenetic analyses identified eighteen gene groups. Results by gene locations indicated that segmental duplication contributes to the expansion of this gene family in rice and maize. Gene organization and motif compositions of the Sm members are highly conserved in each group, indicative of their functional conservation. Expression profiles have provided insights into the possible functional divergence among members of the Sm gene family. Adaptive evolution analyses suggested that purifying selection was the main force driving Sm evolution, but some critical sites might be responsible for functional divergence. In addition, four hundred and seventy-nine interactions were identified by functional network analyses, and most of which were associated with binding, cellular macromolecule biosynthesis, pre-mRNA processing and transferase activity. Overall, the data contribute to a better understanding of the complexity of Sm gene family in rice and maize and will provide a solid foundation for future functional studies.  相似文献   

2.

Background

Vitis vinifera (grape) is one of the most economically significant fruit crops in the world. The availability of the recently released grape genome sequence offers an opportunity to identify and analyze some important gene families in this species. Subtilases are a group of subtilisin-like serine proteases that are involved in many biological processes in plants. However, no comprehensive study incorporating phylogeny, chromosomal location and gene duplication, gene organization, functional divergence, selective pressure and expression profiling has been reported so far for the grape.

Results

In the present study, a comprehensive analysis of the subtilase gene family in V. vinifera was performed. Eighty subtilase genes were identified. Phylogenetic analyses indicated that these subtilase genes comprised eight groups. The gene organization is considerably conserved among the groups. Distribution of the subtilase genes is non-random across the chromosomes. A high proportion of these genes are preferentially clustered, indicating that tandem duplications may have contributed significantly to the expansion of the subtilase gene family. Analyses of divergence and adaptive evolution show that while purifying selection may have been the main force driving the evolution of grape subtilases, some of the critical sites responsible for the divergence may have been under positive selection. Further analyses of real-time PCR data suggested that many subtilase genes might be important in the stress response and functional development of plants.

Conclusions

Tandem duplications as well as purifying and positive selections have contributed to the functional divergence of subtilase genes in V. vinifera. The data may contribute to a better understanding of the grape subtilase gene family.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1116) contains supplementary material, which is available to authorized users.  相似文献   

3.
Detailed studies of individual genes have shown that gene expression divergence often results from adaptive evolution of regulatory sequence. Genome-wide analyses, however, have yet to unite patterns of gene expression with polymorphism and divergence to infer population genetic mechanisms underlying expression evolution. Here, we combined genomic expression data—analyzed in a phylogenetic context—with whole genome light-shotgun sequence data from six Drosophila simulans lines and reference sequences from D. melanogaster and D. yakuba. These data allowed us to use molecular population genetics to test for neutral versus adaptive gene expression divergence on a genomic scale. We identified recent and recurrent adaptive evolution along the D. simulans lineage by contrasting sequence polymorphism within D. simulans to divergence from D. melanogaster and D. yakuba. Genes that evolved higher levels of expression in D. simulans have experienced adaptive evolution of the associated 3′ flanking and amino acid sequence. Concomitantly, these genes are also decelerating in their rates of protein evolution, which is in agreement with the finding that highly expressed genes evolve slowly. Interestingly, adaptive evolution in 5′ cis-regulatory regions did not correspond strongly with expression evolution. Our results provide a genomic view of the intimate link between selection acting on a phenotype and associated genic evolution.  相似文献   

4.
Large-scale comparison of sequence polymorphism and divergence at numerous genomic loci within and between closely related species can reveal signatures of natural selection. Here, we present a population genomics study based on direct sequencing of 61 mitotic cell cycle genes from 30 Arabidopsis thaliana accessions and comparison of the resulting data to the close relative Arabidopsis lyrata. We found that the Arabidopsis core cell cycle (CCC) machinery is not highly constrained but is subject to different modes of selection. We found patterns of purifying selection for the cyclin-dependent kinase (CDK), CDK subunit, retinoblastoma, and WEE1 gene families. Other CCC gene families often showed a mix of one or two constrained genes and relaxed purifying selection on the other genes. We found several large effect mutations in CDKB1;2 that segregate in the species. We found a strong signature of adaptive protein evolution in the Kip-related protein KRP6 and departures from equilibrium at CDKD;1 and CYCA3;3 consistent with the operation of selection in these gene regions. Our data suggest that within Arabidopsis, the genetic robustness of cell cycle–related processes is more due to functional redundancy than high selective constraint.  相似文献   

5.
6.
Pectin lyases cleave the internal glycosidic bonds of pectin by β-elimination, producing non-saturated galacturonic oligomers. Genetic improvement of pectin lyase-overproducing strains is still necessary to improve industrial processes based on this enzyme. In the present study hybrids were obtained by protoplast fusion between mutant pectinolytic Aspergillus flavipes and Aspergillus niveus CH-Y-1043 strains. Prototrophic segregants showed different isoenzymatic profiles and produced increased levels of pectin lyase in cultures containing lemon peel as a sole carbon source. Hybrid HZ showed an increase of 450% and 1300% in pectin lyase production compared with that of A. niveus CH-Y-1043 and A. flavipes, respectively. Pectin lyase produced by the hybrid HZ was partially purified and used for the hydrolysis of orange peel. Pectin lyase was able to hydrolyze 56% of orange peel biomass. However, addition of 2 RFU and 20 U of endo- and exo-polygalacturonase, respectively, induced the hydrolysis of 92% of orange peel solids. In conclusion HZ is a pectin lyase-overproducing hybrid with potential applications in the pectin industry.  相似文献   

7.
8.
Leucine-rich repeat receptor-like kinases (LRR RLKs) comprise the largest group within the plant receptor-like kinase (RLK) superfamily, and the Arabidopsis genome alone contains over 200 LRR RLK genes. Although there is clear evidence for diverse roles played by individual LRR RLK genes in Arabidopsis growth and development, the evolutionary mechanism for this functional diversification is currently unclear. In this study, we focused on the LRRII RLK subfamily to investigate the molecular mechanisms that might have led to the functional differentiation of Arabidopsis LRR RLK genes. Phylogenetic analysis of 14 genes in this subfamily revealed three well-supported groups (I, II, and III). RT-PCR analysis did not find many qualitative differences in expression among these 14 genes in various Arabidopsis tissues, suggesting that evolution of regulatory sequences did not play a major role in their functional divergence. We analyzed substitution patterns in the predicted ligand-binding regions of these genes to examine if positive selection has acted to produce novel ligand-binding specificities, using the nonsynonymous/synonymous rate ratio (d N/d S) as an indicator of selective pressure. Estimates of d N/d S ratios from multiple methods indicate that nonsynonymous substitutions accumulated during divergence of the three lineages. Positive selection is likely to have occurred along the lineages ancestral to groups II and III. We suggest that positive selection on the ligand-binding sites of LRRII RLKs promoted diversification of ligand-binding specificities and thus contributed to the functional differentiation of Arabidopsis LRRII RLK genes during evolution. [Reviewing Editor: Dr. Martin Kreitman]  相似文献   

9.
10.
Unraveling how regulatory divergence contributes to species differences and adaptation requires identifying functional variants from among millions of genetic differences. Analysis of allelic imbalance (AI) reveals functional genetic differences in cis regulation and has demonstrated differences in cis regulation within and between species. Regulatory mechanisms are often highly conserved, yet differences between species in gene expression are extensive. What evolutionary forces explain widespread divergence in cis regulation? AI was assessed in Drosophila melanogaster-Drosophila simulans hybrid female heads using RNA-seq technology. Mapping bias was virtually eliminated by using genotype-specific references. Allele representation in DNA sequencing was used as a prior in a novel Bayesian model for the estimation of AI in RNA. Cis regulatory divergence was common in the organs and tissues of the head with 41% of genes analyzed showing significant AI. Using existing population genomic data, the relationship between AI and patterns of sequence evolution was examined. Evidence of positive selection was found in 30% of cis regulatory divergent genes. Genes involved in defense, RNAi/RISC complex genes, and those that are sex regulated are enriched among adaptively evolving cis regulatory divergent genes. For genes in these groups, adaptive evolution may play a role in regulatory divergence between species. However, there is no evidence that adaptive evolution drives most of the cis regulatory divergence that is observed. The majority of genes showed patterns consistent with stabilizing selection and neutral evolutionary processes.  相似文献   

11.
Mitogen-Activated Protein Kinase (MAPK) genes encode proteins that mediate various signaling pathways associated with biotic and abiotic stress responses in eukaryotes. The MAPK genes form a 3-tier signal transduction cascade between cellular stimuli and physiological responses. Recent identification of soybean MAPKs and availability of genome sequences from other legume species allowed us to identify their MAPK genes. The main objectives of this study were to identify MAPKs in 3 legume species, Lotus japonicus, Medicago truncatula, and Phaseolus vulgaris, and to assess their phylogenetic relationships. We used approaches in comparative genomics for MAPK gene identification and named the newly identified genes following Arabidopsis MAPK nomenclature model. We identified 19, 18, and 15 MAPKs and 7, 4, and 9 MAPKKs in the genome of Lotus japonicus, Medicago truncatula, and Phaseolus vulgaris, respectively. Within clade placement of MAPKs and MAPKKs in the 3 legume species were consistent with those in soybean and Arabidopsis. Among 5 clades of MAPKs, 4 founder clades were consistent to MAPKs of other plant species and orthologs of MAPK genes in the fifth clade-"Clade E" were consistent with those in soybean. Our results also indicated that some gene duplication events might have occurred prior to eudicot-monocot divergence. Highly diversified MAPKs in soybean relative to those in 3 other legume species are attributable to the polyploidization events in soybean. The identification of the MAPK genes in the legume species is important for the legume crop improvement; and evolutionary relationships and functional divergence of these gene members provide insights into plant genome evolution.  相似文献   

12.
Despite growing evidence of rapid evolution in protein coding genes, the contribution of positive selection to intra- and interspecific differences in protein coding regions of the genome is unclear. We attempted to see if genes coding for secreted proteins and genes with narrow expression, specifically those preferentially expressed in the mammary gland, have diverged at a faster rate between domestic cattle (Bos taurus) and humans (Homo sapiens) than other genes and whether positive selection is responsible. Using a large data set, we identified groups of genes based on secretion and expression patterns and compared them for the rate of nonsynonymous (dN) and synonymous (dS) substitutions per site and the number of radical (Dr) and conservative (Dc) amino acid substitutions. We found evidence of rapid evolution in genes with narrow expression, especially for those expressed in the liver and mammary gland and for genes coding for secreted proteins. We compared common human polymorphism data with human-cattle divergence and found that genes with high evolutionary rates in human-cattle divergence also had a large number of common human polymorphisms. This argues against positive selection causing rapid divergence in these groups of genes. In most cases dN/dS ratios were lower in human-cattle divergence than in common human polymorphism presumably due to differences in the effectiveness of purifying selection between long-term divergence and short-term polymorphism.  相似文献   

13.
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in plants. As the last component of the MAPK cascade (MAPKKK–MAPKK–MAPK), MAPK plays important roles in linking upstream kinases and downstream substrates. The MAPK proteins belong to a complex gene family in plants, with 20 MAPK genes in the Arabidopsis genome, 17 in the rice genome, and 21 in the poplar genome. Although the maize genome sequencing has been completed, no comprehensive study has been reported thus far for the MAPK gene family in maize. In this study, we identified 19 MAPK genes in maize. These ZmMPK genes belong to four groups (A–D) found in other plants. The phylogeny, chromosomal location, gene structure, and the functional relevancy of ZmMPK genes were analyzed. Moreover, we discuss the evolutionary divergence of MAPK genes in maize. Furthermore, we analyzed the expression profiles of ZmMPKs using the public microarray data and performed expression analyses in maize seedlings and adult plants. The data obtained from our study contribute to a better understanding of the complexity of MAPKs in plants and provide a useful reference for further functional analysis of MAPK genes in maize.  相似文献   

14.
15.
16.
Most annexins are calcium-dependent, phospholipid-binding proteins with suggested functions in response to environmental stresses and signaling during plant growth and development. They have previously been identified and characterized in Arabidopsis and rice, and constitute a multigene family in plants. In this study, we performed a comparative analysis of annexin gene families in the sequenced genomes of Viridiplantae ranging from unicellular green algae to multicellular plants, and identified 149 genes. Phylogenetic studies of these deduced annexins classified them into nine different arbitrary groups. The occurrence and distribution of bona fide type II calcium binding sites within the four annexin domains were found to be different in each of these groups. Analysis of chromosomal distribution of annexin genes in rice, Arabidopsis and poplar revealed their localization on various chromosomes with some members also found on duplicated chromosomal segments leading to gene family expansion. Analysis of gene structure suggests sequential or differential loss of introns during the evolution of land plant annexin genes. Intron positions and phases are well conserved in annexin genes from representative genomes ranging from Physcomitrella to higher plants. The occurrence of alternative motifs such as K/R/HGD was found to be overlapping or at the mutated regions of the type II calcium binding sites indicating potential functional divergence in certain plant annexins. This study provides a basis for further functional analysis and characterization of annexin multigene families in the plant lineage.  相似文献   

17.
Calcium-dependent protein kinases (CDPKs) are Ca2+-binding proteins known to play crucial roles in Ca2+ signal transduction pathways which have been identified throughout plant kingdom and in certain types of protists. Genome-wide analysis of CDPKs have been carried out in Arabidopsis, rice and wheat, and quite a few of CDPKs were proved to play crucial roles in plant stress responsive signature pathways. In this study, a comprehensive analysis of Populus CDPK and its closely related gene families was performed, including phylogeny, chromosome locations, gene structures, and expression profiles. Thirty Populus CDPK genes and twenty closely related kinase genes were identified, which were phylogenetically clustered into eight distinct subfamilies and predominately distributed across fifteen linkage groups (LG). Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus CDPK gene family. Furthermore, microarray analysis showed that a number of Populus CDPK and its closely related genes differentially expressed across disparate tissues and under various stresses. The expression profiles of paralogous pairs were also investigated to reveal their evolution fates. In addition, quantitative real-time RT-PCR was performed on nine selected CDPK genes to confirm their responses to drought stress treatment. These observations may lay the foundation for future functional analysis of Populus CDPK and its closely related gene families to unravel their biological roles.  相似文献   

18.
Patterns of polymorphism and divergence in Drosophila protein-coding genes suggest that a considerable fraction of amino acid differences between species can be attributed to positive selection and that genes with sex-biased expression, that is, those expressed predominantly in one sex, have especially high rates of adaptive evolution. Previous studies, however, have been restricted to autosomal sex-biased genes and, thus, do not provide a complete picture of the evolutionary forces acting on sex-biased genes across the genome. To determine the effects of X-linkage on sex-biased gene evolution, we surveyed DNA sequence polymorphism and divergence in 45 X-linked genes, including 17 with male-biased expression, 13 with female-biased expression, and 15 with equal expression in the 2 sexes. Using both single- and multilocus tests for selection, we found evidence for adaptive evolution in both groups of sex-biased genes. The signal of adaptive evolution was particularly strong for X-linked male-biased genes. A comparison with data from 91 autosomal genes revealed a "fast-X" effect, in which the rate of adaptive evolution was greater for X-linked than for autosomal genes. This effect was strongest for male-biased genes but could be seen in the other groups as well. A genome-wide analysis of coding sequence divergence that accounted for sex-biased expression also uncovered a fast-X effect for male-biased and unbiased genes, suggesting that recessive beneficial mutations play an important role in adaptation.  相似文献   

19.
The evolution of plant development can be studied in many different ways, each of which provides new insights into how plants have been modified over evolutionary time. DNA sequencing shows that most developmental genes are under purifying selection and that obvious adaptive change in proteins is rare. This may indicate that most change occurs in cis-regulatory sequences, that tests for detecting selection lack power, or both. Gene duplications are common and often correlate with divergence of function, as predicted by theory. Studies of gene expression illuminate similarities among structures in disparate plant groups and indicate that the same genes have been deployed repeatedly for similar developmental ends. Comparative functional studies remain uncommon, but promise to illuminate how changing proteins lead to changes in development. Precise characterization of phenotypes by studies of developmental morphology is beginning to occur in some taxonomic groups. The genetic variation necessary for morphological change must originate as allelic polymorphism within populations; such polymorphism has been identified in grasses and in sunflowers, although it is often cryptic.  相似文献   

20.
Two recent studies demonstrated a positive correlation between divergence in gene expression and protein sequence in Drosophila. This correlation could be driven by positive selection or variation in functional constraint. To distinguish between these alternatives, we compared patterns of molecular evolution for 1,862 genes with two previously reported estimates of expression divergence in Drosophila. We found a slight negative trend (nonsignificant) between positive selection on protein sequence and divergence in expression levels between Drosophila melanogaster and Drosophila simulans. Conversely, shifts in expression patterns during Drosophila development showed a positive association with adaptive protein evolution, though as before the relationship was weak and not significant. Overall, we found no strong evidence for an increase in the incidence of positive selection on protein-coding regions in genes with divergent expression in Drosophila, suggesting that the previously reported positive association between protein and regulatory divergence primarily reflects variation in functional constraint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号