共查询到20条相似文献,搜索用时 15 毫秒
1.
Background
Predator-prey models for virus-host interactions predict that viruses will cause oscillations of microbial host densities due to an arms race between resistance and virulence. A new form of microbial resistance, CRISPRs (clustered regularly interspaced short palindromic repeats) are a rapidly evolving, sequence-specific immunity mechanism in which a short piece of invading viral DNA is inserted into the host''s chromosome, thereby rendering the host resistant to further infection. Few studies have linked this form of resistance to population dynamics in natural microbial populations.Methodology/Principal Findings
We examined sequence diversity in 39 strains of the archeaon Sulfolobus islandicus from a single, isolated hot spring from Kamchatka, Russia to determine the effects of CRISPR immunity on microbial population dynamics. First, multiple housekeeping genetic markers identify a large clonal group of identical genotypes coexisting with a diverse set of rare genotypes. Second, the sequence-specific CRISPR spacer arrays split the large group of isolates into two very different groups and reveal extensive diversity and no evidence for dominance of a single clone within the population.Conclusions/Significance
The evenness of resistance genotypes found within this population of S. islandicus is indicative of a lack of strain dominance, in contrast to the prediction for a resistant strain in a simple predator-prey interaction. Based on evidence for the independent acquisition of resistant sequences, we hypothesize that CRISPR mediated clonal interference between resistant strains promotes and maintains diversity in this natural population. 相似文献2.
Background
Organophosphates (OPs) are neurotoxic compounds for which current methods of elimination are unsatisfactory; thus bio-remediation is considered as a promising alternative. Here we provide the structural and enzymatic characterization of the recently identified enzyme isolated from Pseudomonas pseudoalcaligenes dubbed OPHC2. OPHC2 belongs to the metallo-β-lactamase superfamily and exhibits an unusual thermal resistance and some OP degrading abilities.Principal findings
The X-ray structure of OPHC2 has been solved at 2.1 Å resolution. The enzyme is roughly globular exhibiting a αβ/βα topology typical of the metallo-β-lactamase superfamily. Several structural determinants, such as an extended dimerization surface and an intramolecular disulfide bridge, common features in thermostable enzymes, are consistent with its high Tm (97.8°C). Additionally, we provide the enzymatic characterization of OPHC2 against a wide range of OPs, esters and lactones.Significance
OPHC2 possesses a broad substrate activity spectrum, since it hydrolyzes various phosphotriesters, esters, and a lactone. Because of its organophosphorus hydrolase activity, and given its intrinsic thermostability, OPHC2 is an interesting candidate for the development of an OPs bio-decontaminant. Its X-ray structure shed light on its active site, and provides key information for the understanding of the substrate binding mode and catalysis. 相似文献3.
LicA plays a key role in the cell-wall phosphorylcholine biosynthesis of Streptococcus pneumonia. Here we determined the crystal structures of apo-form LicA at 1.94 Å and two complex forms LicA-choline and LicA-AMP-MES, at 2.01 and 1.45 Å resolution, respectively. The overall structure adopts a canonical protein kinase-like fold, with the active site located in the crevice of the N- and C- terminal domains. The three structures present distinct poses of the active site, which undergoes an open-closed-open conformational change upon substrate binding and product release. The structure analyses combined with mutageneses and enzymatic assays enabled us to figure out the key residues for the choline kinase activity of LicA. In addition, structural comparison revealed the loop between helices α7 and α8 might modulate the substrate specificity and catalytic activity. These findings shed light on the structure and mechanism of the prokaryotic choline kinase LicA, and might direct the rational design of novel anti-pneumococcal drugs. 相似文献
4.
SsoPox, a bifunctional enzyme with organophosphate hydrolase and N-acyl homoserine lactonase activities from the hyperthermophilic archaeon Sulfolobus solfataricus, was overexpressed and purified from recombinant Pseudomonas putida KT2440 with a yield of 9.4 mg of protein per liter of culture. The enzyme has a preference for N-acyl homoserine lactones (AHLs) with acyl chain lengths of at least 8 carbon atoms, mainly due to lower K(m) values for these substrates. The highest specificity constant obtained was for N-3-oxo-decanoyl homoserine lactone (k(cat)/K(m) = 5.5 × 10(3) M(-1)·s(-1)), but SsoPox can also degrade N-butyryl homoserine lactone (C(4)-HSL) and N-oxo-dodecanoyl homoserine lactone (oxo-C(12)-HSL), which are important for quorum sensing in our Pseudomonas aeruginosa model system. When P. aeruginosa PAO1 cultures were grown in the presence of SsoPox-immobilized membranes, the production of C(4)-HSL- and oxo-C(12)-HSL-regulated virulence factors, elastase, protease, and pyocyanin were significantly reduced. This is the first demonstration that immobilized quorum-quenching enzymes can be used to attenuate the production of virulence factors controlled by quorum-sensing signals. 相似文献
5.
Andres H. de la Pe?a Allison Suarez Krisna C. Duong-ly Andrew J. Schoeffield Mario A. Pizarro-Dupuy Melissa Zarr Silvia A. Pineiro L. Mario Amzel Sandra B. Gabelli 《PloS one》2015,10(11)
Given the broad range of substrates hydrolyzed by Nudix (nucleoside diphosphate linked to X) enzymes, identification of sequence and structural elements that correctly predict a Nudix substrate or characterize a family is key to correctly annotate the myriad of Nudix enzymes. Here, we present the structure determination and characterization of Bd3179 –- a Nudix hydrolase from Bdellovibrio bacteriovorus–that we show localized in the periplasmic space of this obligate Gram-negative predator. We demonstrate that the enzyme is a nucleoside diphosphate sugar hydrolase (NDPSase) and has a high degree of sequence and structural similarity to a canonical ADP-ribose hydrolase and to a nucleoside diphosphate sugar hydrolase (1.4 and 1.3 Å Cα RMSD respectively). Examination of the structural elements conserved in both types of enzymes confirms that an aspartate-X-lysine motif on the C-terminal helix of the α-β-α NDPSase fold differentiates NDPSases from ADPRases. 相似文献
6.
Renda Hawwa Robert J. Turner Andrew D. Mesecar 《Archives of biochemistry and biophysics》2009,488(2):109-120
A new enzyme homologous to phosphotriesterase was identified from the bacterium Geobacillus stearothermophilus (GsP). This enzyme belongs to the amidohydrolase family and possesses the ability to hydrolyze both lactone and organophosphate (OP) compounds, making it a phosphotriesterase-like lactonase (PLL). GsP possesses higher OP-degrading activity than recently characterized PLLs, and it is extremely thermostable. GsP is active up to 100 °C with an energy of activation of 8.0 kcal/mol towards ethyl paraoxon, and it can withstand an incubation temperature of 60 °C for two days. In an attempt to understand the thermostability of PLLs, the X-ray structure of GsP was determined and compared to those of existing PLLs. Based upon a comparative analysis, a new thermal advantage score and plot was developed and reveals that a number of different factors contribute to the thermostability of PLLs. 相似文献
7.
Trincone A Cobucci-Ponzano B Di Lauro B Rossi M Mitsuishi Y Moracci M 《Extremophiles : life under extreme conditions》2001,5(4):277-282
The first, recently identified, archaeal alpha-xylosidase from Sulfolobus solfataricus (XylS) shows high specificity for hydrolysis of isoprimeverose [alpha-D-xylopyranosyl-(1,6)-D-glucopyranose, (X)], the p-nitrophenyl-beta derivative of isoprimeverose, and xyloglucan oligosaccharides and has transxylosidic activity, forming, in a retaining mode, interesting alpha-xylosides. This article describes the synthesis of isoprimeverose, the disaccharidic repeating unit of xyloglucan, of the p-nitrophenyl-beta derivative of isoprimeverose, and of a trisaccharide based on isoprimeverose that is one of the trisaccharidic building blocks of xyloglucan. A substrate structure-activity relationship is recognized for both the hydrolysis and the synthesis reactions of XylS, it being a biocatalyst (i) active hydrolytically only on X-ending substrates liberating a xylose molecule and (ii) capable of transferring xylose only on the nonreducing end glucose of p-nitrophenyl-(PNP)-beta-D-cellobioside. The compounds synthesized by this enzyme are a starting point for enzymological studies of other new enzymes (i.e., xyloglucanases) for which suitable substrates are difficult to synthesize. This study also allows us to define the chemical characteristics of the xylose-transferring activity of this new archaeal enzyme, contributing to building up a library of different glycosidases with high specific selectivity for oligosaccharide synthesis. 相似文献
8.
Enzymatic properties and substrate specificity of recombinant beta-glycosidases from a hyperthermophilic archaeon, Sulfolobus shibatae (rSSG), were analyzed. rSSG showed its optimum temperature and pH at 95 degrees C and pH 5.0, respectively. Thermal inactivation of rSSG showed that its half-life of enzymatic activity at 75 degrees C was 15 h whereas it drastically decreased to 3.9 min at 95 degrees C. The addition of 10 mM of MnCl2 enhanced the hydrolysis activity of rSSG up to 23% whereas most metal ions did not show any considerable effect. Dithiothreitol (DTT) and 2-mercaptoethanol exhibited significant influence on the increase of the hydrolysis activity of rSSG. rSSG apparently preferred laminaribiose (beta1-->3Glc), followed by sophorose (beta1-->2Glc), gentiobiose (beta1-->6Glc), and cellobiose (beta1--4Glc). Various intermolecular transfer products were formed by rSSG in the lactose reaction, indicating that rSSG prefers lactose as a good acceptor as well as a donor. The strong intermolecular transglycosylation activity of rSSG can be applied in making functional oligosaccharides. 相似文献
9.
Elias M Dupuy J Merone L Mandrich L Porzio E Moniot S Rochu D Lecomte C Rossi M Masson P Manco G Chabriere E 《Journal of molecular biology》2008,379(5):1017-1028
Organophosphates are the largest class of known insecticides, several of which are potent nerve agents. Consequently, organophosphate-degrading enzymes are of great scientific interest as bioscavengers and biodecontaminants. Recently, a hyperthermophilic phosphotriesterase (known as SsoPox), from the Archaeon Sulfolobus solfataricus, has been isolated and found to possess a very high lactonase activity. Here, we report the three-dimensional structures of SsoPox in the apo form (2.6 Å resolution) and in complex with a quorum-sensing lactone mimic at 2.0 Å resolution. The structure also reveals an unexpected active site topology, and a unique hydrophobic channel that perfectly accommodates the lactone substrate. Structural and mutagenesis evidence allows us to propose a mechanism for lactone hydrolysis and to refine the catalytic mechanism established for phosphotriesterases. In addition, SsoPox structures permit the correlation of experimental lactonase and phosphotriesterase activities and this strongly suggests lactonase activity as the cognate function of SsoPox. This example demonstrates that promiscuous activities probably constitute a large and efficient reservoir for the creation of novel catalytic activities. 相似文献
10.
Geobacillus caldoxylosilyticus YS-8, which was isolated from volcanic soil in Indonesia, was found to degrade various N-acylhomoserine lactones (AHLs) with different lengths and acyl side-chain substitutions over a wide temperature range of 30-70 °C. The purified AHL-degrading enzyme showed a single band of 32 kDa, and its N-terminal amino acid sequence was determined to be ANVIKARPKLYVMDN, tentatively suggesting that the AHL-degrading enzyme was AHL lactonase. The AHL-degrading activity of the purified enzyme was maximized at pH 7.5 and 50 °C, and it retained about 50% of its activity even after a heat treatment at 60 °C for 3 h, exhibiting properties consistent with a thermostable enzyme. The mass spectrometric analysis demonstrated that the AHL-degrading enzyme catalyzed lactone ring opening of N-3-oxohexanoyl-L-homoserine lactone and N-hexanoyl-L-homoserine lactone by hydrolyzing the lactones and working as an AHL lactonase. 相似文献
11.
Purification and characterization of aspartate aminotransferase from the thermoacidophilic archaebacterium Sulfolobus solfataricus 总被引:4,自引:0,他引:4
G Marino G Nitti M I Arnone G Sannia A Gambacorta M De Rosa 《The Journal of biological chemistry》1988,263(25):12305-12309
Aspartate aminotransferase from the archaebacterium Sulfolobus solfataricus, a thermoacidophilic organism isolated from an acidic hot spring (optimal growth conditions: 87 degrees C, pH 3.5) was purified to homogeneity. The enzyme is a dimer (Mr subunit = 53,000) showing microheterogeneity when submitted to chromatofocusing and/or isoelectric focusing analysis (two main bands having pI = 6.8 and 6.3 were observed). The N-terminal sequence (22 residues) does not show any homology with any stretch of known sequence of aspartate aminotransferases from animal and bacterial sources. The apoenzyme can be reconstituted with pyridoxamine 5'-phosphate and/or pyridoxal 5'-phosphate, each subunit binding 1 mol of coenzyme. The absorption maxima of the pyridoxamine and pyridoxal form are centered at 325 and 335 nm, respectively; the shape of the pyridoxal form band does not change with pH. The enzyme has an optimum temperature higher than 95 degrees C, and at 100 degrees C shows a half-inactivation time of 2 h. The above properties seem to be unique even for enzymes from extreme thermophiles (Daniel, R. M. (1986) in Protein Structure, Folding, and Design (Oxender, D. L., ed) pp. 291-296, Alan R. Liss, Inc., New York) and lead to the conclusion that aspartate aminotransferase from S. solfataricus is one of the most thermophilic and thermostable enzymes so far known. 相似文献
12.
Purification and characterization of DNA polymerase from the archaebacterium Sulfolobus acidocaldarius. 总被引:2,自引:1,他引:2
下载免费PDF全文

DNA polymerase has been purified about 25,000-fold from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. On SDS-PAGE the enzyme was observed to have a molecular weight of 100 kDa and to be about 90% pure. The native molecular weight was 108 kDa indicating that the enzyme is composed of a single polypeptide. Activity gel analysis showed an active polypeptide of about 100 kDa. Under conditions promoting proteolysis this polypeptide was degraded to a slightly smaller form of 98 kDa. The enzyme has been characterized in respect to optimal assay conditions, template specificity, sensitivity to inhibitors and associated nuclease activities. The high temperature optimum of 65 degrees C should be emphasized. No substantial similarities have been found with other prokaryotic and eukaryotic DNA polymerases, although the enzyme bears certain resemblances to prokaryotic non-replicative polymerases. 相似文献
13.
Xiang-Tian Yin Liang Xu Su-Su Fan Li-Na Xu Duo-Chuan Li Zhen-Yu Liu 《World journal of microbiology & biotechnology》2010,26(8):1361-1367
An AHL lactonase gene (aiiA) was PCR amplified from the genomic DNA of Bacillus amyloliquefaciens, with the intact open reading frame of 753 base pair. The gene shares high identity to its homologues present in different
Bacillus species. The expression plasmid carrying a tact aiiA-PEBA gene was constructed and the gene was overproduced in Escherichia coli BL21 (DE3). The product expressed resulted in attenuation and suspension of the infection of Pectobacterium carotovorum subsp. carotovorum on carrot. This study verified the existence of the aiiA gene in B. amyloliquefaciens and provided a prospect of the strain as biocontrol agents with quorum quenching property on bacterial disease control. 相似文献
14.
An affinity chromatography-based method has been developed for estrogen receptor isolation which requires the inclusion of sodium molybdate in purification buffers for maintaining the large 9-10S form of the receptor. The protein products obtained from affinity chromatography of calf uterine receptor extracts or from extracts presaturated with estradiol have been analyzed by gel electrophoresis under denaturing conditions. Major estrogen sensitive proteins were peptides with Mr approximately 90,000, 65,000 and 50,000. Two additional proteins (60,000 and 53,000) of lower abundance and with demonstrated estrogen sensitivity were also observed. Affinity labeling with [3H]tamoxifen aziridine identified the Mr 65,000 protein as the estrogen receptor and suggested that the Mr 60,000, 53,000 and 50,000 peptide components were derived proteolytically from this parent unit. The 90,000 mol. wt component was readily dissociated from heparin-sepharose immobilized estrogen receptor by elution with low salt buffers without molybdate. Peptide mapping experiments indicated that the 90,000 mol. wt component was not related to the Mr 65,000 and 50,000 estrogen receptors, but confirmed the smaller binding unit to be a proteolytic fragment of the 65,000 mol. wt receptor. The results suggest that the 90K protein associates non-covalently with the Mr 65,000 estrogen binding unit as a nonhormone binding component of the 9-10S receptor. 相似文献
15.
Porcelli M Concilio L Peluso I Marabotti A Facchiano A Cacciapuoti G 《The FEBS journal》2008,275(8):1900-1914
We report the characterization of the pyrimidine-specific ribonucleoside hydrolase from the hyperthermophilic archaeon Sulfolobus solfataricus (SsCU-NH). The gene SSO0505 encoding SsCU-NH was cloned and expressed in Escherichia coli and the recombinant protein was purified to homogeneity. SsCU-NH is a homotetramer of 140 kDa that recognizes uridine and cytidine as substrates. SsCU-NH shares 34% sequence identity with pyrimidine-specific nucleoside hydrolase from E. coli YeiK. The alignment of the amino acid sequences of SsCU-NH with nucleoside hydrolases whose 3D structures have been solved indicates that the amino acid residues involved in the calcium- and ribose-binding sites are preserved. SsCU-NH is highly thermophilic with an optimum temperature of 100 degrees C and is characterized by extreme thermodynamic stability (T(m) = 106 degrees C) and kinetic stability (100% residual activity after 1 h incubation at 90 degrees C). Limited proteolysis indicated that the only proteolytic cleavage site is localized in the C-terminal region and that the C-terminal peptide is necessary for the integrity of the active site. The structure of the enzyme determined by homology modeling provides insight into the proteolytic analyses as well as into mechanisms of thermal stability. This is the first nucleoside hydrolase from Archaea. 相似文献
16.
The carboxylesterase, a 34 kDa monomeric enzyme, was purified from the thermoacidophilic archaeon Sulfolobus solfataricus P1. The optimum temperature and pH were 85 degrees C and 8.0, respectively. The enzyme showed remarkable thermostability: 41% of its activity remained after 5 days of incubation at 80 degrees C. In addition, the purified enzyme exhibited stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme has broad substrate specificity towards various PNP esters and short acyl chain triacylglycerols such as tributyrin (C4:0). Among the PNP esters tested, the best substrate was PNP-caprylate (C8) with Km and kcat values of 71 microM and 14,700 s(-1), respectively. The carboxylesterase gene consisted of 915 bp corresponding to 305 amino acid residues. We demonstrated that active recombinant S. solfataricus carboxylesterase could be expressed in Escherichia coli. The enzyme was identified as a serine esterase belonging to mammalian hormone-sensitive lipases (HSL) family and contained a catalytic triad composed of serine, histidine, and aspartic acid in the active site. 相似文献
17.
Weixiao Y. Wahlgren Hadil Omran David von Stetten Antoine Royant Sjoerd van der Post Gergely Katona 《PloS one》2012,7(10)
Iron storage and elimination of toxic ferrous iron are the responsibility of bacterioferritins in bacterial species. Bacterioferritins are capable of oxidizing iron using molecular oxygen and import iron ions into the large central cavity of the protein, where they are stored in a mineralized form. We isolated, crystallized bacterioferritin from the microaerophilic/anaerobic, purple non-sulfur bacterium Blastochloris viridis and determined its amino acid sequence and X-ray structure. The structure and sequence revealed similarity to other purple bacterial species with substantial differences in the pore regions. Static 3- and 4-fold pores do not allow the passage of iron ions even though structural dynamics may assist the iron gating. On the other hand the B-pore is open to water and larger ions in its native state. In order to study the mechanism of iron import, multiple soaking experiments were performed. Upon Fe(II) and urea treatment the ferroxidase site undergoes reorganization as seen in bacterioferritin from Escherichia coli and Pseudomonas aeruginosa. When soaking with Fe(II) only, a closely bound small molecular ligand is observed close to Fe1 and the coordination of Glu94 to Fe2 changes from bidentate to monodentate. DFT calculations indicate that the bound ligand is most likely a water or a hydroxide molecule representing a product complex. On the other hand the different soaking treatments did not modify the conformation of other pore regions. 相似文献
18.
A gene encoding a putative glycogen-debranching enzyme in Sulfolobus shibatae (abbreviated as SSGDE) was cloned and expressed in Escherichia coli. The recombinant enzyme was purified to homogeneity by heat treatment and Ni-NTA affinity chromatography. The recombinant SSGDE was extremely thermostable, with an optimal temperature at 85 degrees C. The enzyme had an optimum pH of 5.5 and was highly stable from pH 4.5 to 6.5. The substrate specificity of SSGDE suggested that it possesses characteristics of both amylo-1,6-glucosidase and alpha-1,4-glucanotransferase. SSGDE clearly hydrolyzed pullulan to maltotrlose, and 6-O-alpha-maltosyl-beta-cyclodextrin (G2-beta-CD) to maltose and beta-cyclodextrin. At the same time, SSGDE transferred maltooligosyl residues to the maltooligosaccharides employed, and maltosyl residues to G2-beta-CD. The enzyme preferentially hydrolyzed amylopectin, followed in a decreasing order by glycogen, pullulan, and amylose. Therefore, the present results suggest that the glycogen-debranching enzyme from S. shibatae may have industrial application for the efficient debranching and modification of starch to dextrins at a high temperature. 相似文献
19.
Molecular and biochemical characterization of the recombinant amidase from hyperthermophilic archaeon Sulfolobus solfataricus 总被引:1,自引:0,他引:1
Anna d' Abusco Sergio Ammendola Roberto Scandurra Laura Politi 《Extremophiles : life under extreme conditions》2001,5(3):183-192
We have cloned, sequenced, and overexpressed in Escherichia coli the amidase gene from the hyperthermophilic archaeon Sulfolobus solfataricus (strain MT4). The recombinant thermophilic protein was expressed as a fusion protein with an N-terminus six-histidine-residue affinity tag. The enzyme, the first characterized archaeal amidase, is a monomer of 55,784 daltons, enantioselective, and active on 2- to 6-carbon aliphatic amides and on many aromatic amides, over the pH range 4-9 and at temperatures from 60 degrees to 95 degrees C. The S. solfataricus amidase belongs to the class of amidases that share a characteristic signature, GGSS(S/ G)GS, located in the central region of the protein, and which show remarkable variability in their individual substrate specificities, can hydrolyze aliphatic or aromatic substrates, and share a large invariance of their primary structure. 相似文献
20.
The first archaeal aconitase was isolated from the cytosol of the thermoacidophilic Sulfolobus acidocaldarius. Interestingly, the enzyme was copurified with an isocitrate lyase. This enzyme, directly converting isocitrate, the reaction product of the aconitase reaction, was also unknown in crenarchaeota, thus far. Both proteins could only be separated by SDS gel electrophoresis yielding apparent molecular masses of 96 kDa for the aconitase and 46 kDa for the isocitrate lyase. Despite of its high oxygen sensitivity, the aconitase could be enriched 27-fold to a specific activity of approximately 55 micromol x min(-1) x mg(-1), based on the direct aconitase assay system. Maximal enzyme activities were measured at pH 7.4 and the temperature optimum for the archaeal enzyme was recorded at 75 degrees C, slightly under the growth optimum of S. acidocaldarius around 80 degrees C. Thermal inactivation studies of the aconitase revealed the enzymatic activity to be uninfluenced after one hour incubation at 80 degrees C. Even at 95 degrees C, a half-life of approximately 14 min was determined, clearly defining it as a thermostable protein. The apparent K(m) values for the three substrates cis-aconitate, citrate and isocitrate were found as 108 microM, 2.9 mM and 370 microM, respectively. The aconitase reaction was inhibited by the typical inhibitors fluorocitrate, trans-aconitate and tricarballylate. Amino-acid sequencing of three internal peptides of the S. acidocaldarius aconitase revealed the presence of highly conserved residues in the archaeal enzyme. By amino-acid sequence alignments, the S. acidocaldarius sequence was found to be highly homologous to either other putative archaeal or known eukaryal and bacterial sequences. As shown by EPR-spectroscopy, the enzyme hosts an interconvertible [3Fe--4S] cluster. 相似文献