首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
We present an EEG study of two music improvisation experiments. Professional musicians with high level of improvisation skills were asked to perform music either according to notes (composed music) or in improvisation. Each piece of music was performed in two different modes: strict mode and “let-go” mode. Synchronized EEG data was measured from both musicians and listeners. We used one of the most reliable causality measures: conditional Mutual Information from Mixed Embedding (MIME), to analyze directed correlations between different EEG channels, which was combined with network theory to construct both intra-brain and cross-brain networks. Differences were identified in intra-brain neural networks between composed music and improvisation and between strict mode and “let-go” mode. Particular brain regions such as frontal, parietal and temporal regions were found to play a key role in differentiating the brain activities between different playing conditions. By comparing the level of degree centralities in intra-brain neural networks, we found a difference between the response of musicians and the listeners when comparing the different playing conditions.  相似文献   

2.
Recent studies have emphasized the importance of multiplex networks – interdependent networks with shared nodes and different types of connections – in systems primarily outside of neuroscience. Though the multiplex properties of networks are frequently not considered, most networks are actually multiplex networks and the multiplex specific features of networks can greatly affect network behavior (e.g. fault tolerance). Thus, the study of networks of neurons could potentially be greatly enhanced using a multiplex perspective. Given the wide range of temporally dependent rhythms and phenomena present in neural systems, we chose to examine multiplex networks of individual neurons with time scale dependent connections. To study these networks, we used transfer entropy – an information theoretic quantity that can be used to measure linear and nonlinear interactions – to systematically measure the connectivity between individual neurons at different time scales in cortical and hippocampal slice cultures. We recorded the spiking activity of almost 12,000 neurons across 60 tissue samples using a 512-electrode array with 60 micrometer inter-electrode spacing and 50 microsecond temporal resolution. To the best of our knowledge, this preparation and recording method represents a superior combination of number of recorded neurons and temporal and spatial recording resolutions to any currently available in vivo system. We found that highly connected neurons (“hubs”) were localized to certain time scales, which, we hypothesize, increases the fault tolerance of the network. Conversely, a large proportion of non-hub neurons were not localized to certain time scales. In addition, we found that long and short time scale connectivity was uncorrelated. Finally, we found that long time scale networks were significantly less modular and more disassortative than short time scale networks in both tissue types. As far as we are aware, this analysis represents the first systematic study of temporally dependent multiplex networks among individual neurons.  相似文献   

3.
Episodic memory depends on interactions between the hippocampus and interconnected neocortical regions. Here, using data-driven analyses of resting-state functional magnetic resonance imaging (fMRI) data, we identified the networks that interact with the hippocampus—the default mode network (DMN) and a “medial temporal network” (MTN) that included regions in the medial temporal lobe (MTL) and precuneus. We observed that the MTN plays a critical role in connecting the visual network to the DMN and hippocampus. The DMN could be further divided into 3 subnetworks: a “posterior medial” (PM) subnetwork comprised of posterior cingulate and lateral parietal cortices; an “anterior temporal” (AT) subnetwork comprised of regions in the temporopolar and dorsomedial prefrontal cortex; and a “medial prefrontal” (MP) subnetwork comprised of regions primarily in the medial prefrontal cortex (mPFC). These networks vary in their functional connectivity (FC) along the hippocampal long axis and represent different kinds of information during memory-guided decision-making. Finally, a Neurosynth meta-analysis of fMRI studies suggests new hypotheses regarding the functions of the MTN and DMN subnetworks, providing a framework to guide future research on the neural architecture of episodic memory.

Episodic memory depends on interactions between the hippocampus and interconnected neocortical regions. This study uses network analyses of intrinsic brain networks at rest to identify and characterize brain networks that interact with the hippocampus and have distinct functions during memory-guided decision making.  相似文献   

4.
We explore and analyze the nonlinear switching dynamics of neuronal networks with non-homogeneous connectivity. The general significance of such transient dynamics for brain function is unclear; however, for instance decision-making processes in perception and cognition have been implicated with it. The network under study here is comprised of three subnetworks of either excitatory or inhibitory leaky integrate-and-fire neurons, of which two are of the same type. The synaptic weights are arranged to establish and maintain a balance between excitation and inhibition in case of a constant external drive. Each subnetwork is randomly connected, where all neurons belonging to a particular population have the same in-degree and the same out-degree. Neurons in different subnetworks are also randomly connected with the same probability; however, depending on the type of the pre-synaptic neuron, the synaptic weight is scaled by a factor. We observed that for a certain range of the “within” versus “between” connection weights (bifurcation parameter), the network activation spontaneously switches between the two sub-networks of the same type. This kind of dynamics has been termed “winnerless competition”, which also has a random component here. In our model, this phenomenon is well described by a set of coupled stochastic differential equations of Lotka-Volterra type that imply a competition between the subnetworks. The associated mean-field model shows the same dynamical behavior as observed in simulations of large networks comprising thousands of spiking neurons. The deterministic phase portrait is characterized by two attractors and a saddle node, its stochastic component is essentially given by the multiplicative inherent noise of the system. We find that the dwell time distribution of the active states is exponential, indicating that the noise drives the system randomly from one attractor to the other. A similar model for a larger number of populations might suggest a general approach to study the dynamics of interacting populations of spiking networks.  相似文献   

5.
We show how anomalous time reversal of stimuli and their associated responses can exist in very small connectionist models. These networks are built from dynamical toy model neurons which adhere to a minimal set of biologically plausible properties. The appearance of a “ghost” response, temporally and spatially located in between responses caused by actual stimuli, as in the phi phenomenon, is demonstrated in a similar small network, where it is caused by priming and long-distance feedforward paths. We then demonstrate that the color phi phenomenon can be present in an echo state network, a recurrent neural network, without explicitly training for the presence of the effect, such that it emerges as an artifact of the dynamical processing. Our results suggest that the color phi phenomenon might simply be a feature of the inherent dynamical and nonlinear sensory processing in the brain and in and of itself is not related to consciousness.  相似文献   

6.
Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best “LFP proxy”, we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with “ground-truth” LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo.  相似文献   

7.
It has recently been shown that networks of spiking neurons with noise can emulate simple forms of probabilistic inference through “neural sampling”, i.e., by treating spikes as samples from a probability distribution of network states that is encoded in the network. Deficiencies of the existing model are its reliance on single neurons for sampling from each random variable, and the resulting limitation in representing quickly varying probabilistic information. We show that both deficiencies can be overcome by moving to a biologically more realistic encoding of each salient random variable through the stochastic firing activity of an ensemble of neurons. The resulting model demonstrates that networks of spiking neurons with noise can easily track and carry out basic computational operations on rapidly varying probability distributions, such as the odds of getting rewarded for a specific behavior. We demonstrate the viability of this new approach towards neural coding and computation, which makes use of the inherent parallelism of generic neural circuits, by showing that this model can explain experimentally observed firing activity of cortical neurons for a variety of tasks that require rapid temporal integration of sensory information.  相似文献   

8.
Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe “Touch and Zap”, an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the “Touch”. By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or “Zap”, as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell''s intrinsic properties and local network. Because the Touch and Zap method is performed semi-automatically, this approach is more reproducible and less dependent on experimenter technique.  相似文献   

9.
We organize our behavior and store structured information with many procedures that require the coding of spatial and temporal order in specific neural modules. In the simplest cases, spatial and temporal relations are condensed in prepositions like “below” and “above”, “behind” and “in front of”, or “before” and “after”, etc. Neural operators lie beneath these words, sharing some similarities with logical gates that compute spatial and temporal asymmetric relations. We show how these operators can be modeled by means of neural matrix memories acting on Kronecker tensor products of vectors. The complexity of these memories is further enhanced by their ability to store episodes unfolding in space and time. How does the brain scale up from the raw plasticity of contingent episodic memories to the apparent stable connectivity of large neural networks? We clarify this transition by analyzing a model that flexibly codes episodic spatial and temporal structures into contextual markers capable of linking different memory modules.  相似文献   

10.
It has been a long-standing goal in systems biology to find relations between the topological properties and functional features of protein networks. However, most of the focus in network studies has been on highly connected proteins (“hubs”). As a complementary notion, it is possible to define bottlenecks as proteins with a high betweenness centrality (i.e., network nodes that have many “shortest paths” going through them, analogous to major bridges and tunnels on a highway map). Bottlenecks are, in fact, key connector proteins with surprising functional and dynamic properties. In particular, they are more likely to be essential proteins. In fact, in regulatory and other directed networks, betweenness (i.e., “bottleneck-ness”) is a much more significant indicator of essentiality than degree (i.e., “hub-ness”). Furthermore, bottlenecks correspond to the dynamic components of the interaction network—they are significantly less well coexpressed with their neighbors than nonbottlenecks, implying that expression dynamics is wired into the network topology.  相似文献   

11.
Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of “dynamical relaying” – a mechanism that relies on a specific network motif – has proven to be the most robust with respect to parameter mismatch and system noise. Surprisingly, despite a contrary belief in the community, the common driving motif is an unreliable means of establishing zero-lag synchrony. Although dynamical relaying has been validated in empirical and computational studies, the deeper dynamical mechanisms and comparison to dynamics on other motifs is lacking. By systematically comparing synchronization on a variety of small motifs, we establish that the presence of a single reciprocally connected pair – a “resonance pair” – plays a crucial role in disambiguating those motifs that foster zero-lag synchrony in the presence of conduction delays (such as dynamical relaying) from those that do not (such as the common driving triad). Remarkably, minor structural changes to the common driving motif that incorporate a reciprocal pair recover robust zero-lag synchrony. The findings are observed in computational models of spiking neurons, populations of spiking neurons and neural mass models, and arise whether the oscillatory systems are periodic, chaotic, noise-free or driven by stochastic inputs. The influence of the resonance pair is also robust to parameter mismatch and asymmetrical time delays amongst the elements of the motif. We call this manner of facilitating zero-lag synchrony resonance-induced synchronization, outline the conditions for its occurrence, and propose that it may be a general mechanism to promote zero-lag synchrony in the brain.  相似文献   

12.

Background

Numerous neuroimaging studies report abnormal regional brain activity during working memory performance in schizophrenia, but few have examined brain network integration as determined by “functional connectivity” analyses.

Methodology/Principal Findings

We used independent component analysis (ICA) to identify and characterize dysfunctional spatiotemporal networks in schizophrenia engaged during the different stages (encoding and recognition) of a Sternberg working memory fMRI paradigm. 37 chronic schizophrenia and 54 healthy age/gender-matched participants performed a modified Sternberg Item Recognition fMRI task. Time series images preprocessed with SPM2 were analyzed using ICA. Schizophrenia patients showed relatively less engagement of several distinct “normal” encoding-related working memory networks compared to controls. These encoding networks comprised 1) left posterior parietal-left dorsal/ventrolateral prefrontal cortex, cingulate, basal ganglia, 2) right posterior parietal, right dorsolateral prefrontal cortex and 3) default mode network. In addition, the left fronto-parietal network demonstrated a load-dependent functional response during encoding. Network engagement that differed between groups during recognition comprised the posterior cingulate, cuneus and hippocampus/parahippocampus. As expected, working memory task accuracy differed between groups (p<0.0001) and was associated with degree of network engagement. Functional connectivity within all three encoding-associated functional networks correlated significantly with task accuracy, which further underscores the relevance of abnormal network integration to well-described schizophrenia working memory impairment. No network was significantly associated with task accuracy during the recognition phase.

Conclusions/Significance

This study extends the results of numerous previous schizophrenia studies that identified isolated dysfunctional brain regions by providing evidence of disrupted schizophrenia functional connectivity using ICA within widely-distributed neural networks engaged for working memory cognition.  相似文献   

13.
Understanding how pain is processed in the brain has been an enduring puzzle, because there doesn''t appear to be a single “pain cortex” that directly codes the subjective perception of pain. An emerging concept is that, instead, pain might emerge from the coordinated activity of an integrated brain network. In support of this view, Woo and colleagues present evidence that distinct brain networks support the subjective changes in pain that result from nociceptive input and self-directed cognitive modulation. This evidence for the sensitivity of distinct neural subsystems to different aspects of pain opens up the way to more formal computational network theories of pain.On the surface, pain should have been one of the easier brain systems to understand. Its fundamental importance in organism defence means that its anatomy should be well conserved across species, unlike systems for language, for instance. And its relatively simple scalar signal (from less pain to more pain) should not require extensive computational processing, unlike sound or vision. However, since Penfield''s failure to convincingly locate a “pain cortex” during his classic awake brain stimulation studies in the 1950s [1], trying to piece together the pain system in the brain has been a story of frustration and debate.  相似文献   

14.
In this paper we show how the coupling of the notion of a network with directions with the adaptation of the four-point probe from materials testing gives rise to a natural geometry on such networks. This four-point probe geometry shares many of the properties of hyperbolic geometry wherein the network directions take the place of the sphere at infinity, enabling a navigation of the network in terms of pairs of directions: the geodesic through a pair of points is oriented from one direction to another direction, the pair of which are uniquely determined. We illustrate this in the interesting example of the pages of Wikipedia devoted to Mathematics, or “The MathWiki.” The applicability of these ideas extends beyond Wikipedia to provide a natural framework for visual search and to prescribe a natural mode of navigation for any kind of “knowledge space” in which higher order concepts aggregate various instances of information. Other examples would include genre or author organization of cultural objects such as books, movies, documents or even merchandise in an online store.  相似文献   

15.
The most common lethal accidents in General Aviation are caused by improperly executed landing approaches in which a pilot descends below the minimum safe altitude without proper visual references. To understand how expertise might reduce such erroneous decision-making, we examined relevant neural processes in pilots performing a simulated landing approach inside a functional MRI scanner. Pilots (aged 20–66) were asked to “fly” a series of simulated “cockpit view” instrument landing scenarios in an MRI scanner. The scenarios were either high risk (heavy fog–legally unsafe to land) or low risk (medium fog–legally safe to land). Pilots with one of two levels of expertise participated: Moderate Expertise (Instrument Flight Rules pilots, n = 8) or High Expertise (Certified Instrument Flight Instructors or Air-Transport Pilots, n = 12). High Expertise pilots were more accurate than Moderate Expertise pilots in making a “land” versus “do not land” decision (CFII: d′ = 3.62±2.52; IFR: d′ = 0.98±1.04; p<.01). Brain activity in bilateral caudate nucleus was examined for main effects of expertise during a “land” versus “do not land” decision with the no-decision control condition modeled as baseline. In making landing decisions, High Expertise pilots showed lower activation in the bilateral caudate nucleus (0.97±0.80) compared to Moderate Expertise pilots (1.91±1.16) (p<.05). These findings provide evidence for increased “neural efficiency” in High Expertise pilots relative to Moderate Expertise pilots. During an instrument approach the pilot is engaged in detailed examination of flight instruments while monitoring certain visual references for making landing decisions. The caudate nucleus regulates saccade eye control of gaze, the brain area where the “expertise” effect was observed. These data provide evidence that performing “real world” aviation tasks in an fMRI provide objective data regarding the relative expertise of pilots and brain regions involved in it.  相似文献   

16.
Synchronized gamma frequency oscillations in neural networks are thought to be important to sensory information processing, and their effects have been intensively studied. Here we describe a mechanism by which the nervous system can readily control gamma oscillation effects, depending selectively on visual stimuli. Using a model neural network simulation, we found that sensory response in the primary visual cortex is significantly modulated by the resonance between “spontaneous” and “stimulus-driven” oscillations. This gamma resonance can be precisely controlled by the synaptic plasticity of thalamocortical connections, and cortical response is regulated differentially according to the resonance condition. The mechanism produces a selective synchronization between the afferent and downstream neural population. Our simulation results explain experimental observations such as stimulus-dependent synchronization between the thalamus and the cortex at different oscillation frequencies. The model generally shows how sensory information can be selectively routed depending on its frequency components.  相似文献   

17.
Efficiency and cost of economical brain functional networks   总被引:4,自引:0,他引:4       下载免费PDF全文
Brain anatomical networks are sparse, complex, and have economical small-world properties. We investigated the efficiency and cost of human brain functional networks measured using functional magnetic resonance imaging (fMRI) in a factorial design: two groups of healthy old (N = 11; mean age = 66.5 years) and healthy young (N = 15; mean age = 24.7 years) volunteers were each scanned twice in a no-task or “resting” state following placebo or a single dose of a dopamine receptor antagonist (sulpiride 400 mg). Functional connectivity between 90 cortical and subcortical regions was estimated by wavelet correlation analysis, in the frequency interval 0.06–0.11 Hz, and thresholded to construct undirected graphs. These brain functional networks were small-world and economical in the sense of providing high global and local efficiency of parallel information processing for low connection cost. Efficiency was reduced disproportionately to cost in older people, and the detrimental effects of age on efficiency were localised to frontal and temporal cortical and subcortical regions. Dopamine antagonism also impaired global and local efficiency of the network, but this effect was differentially localised and did not interact with the effect of age. Brain functional networks have economical small-world properties—supporting efficient parallel information transfer at relatively low cost—which are differently impaired by normal aging and pharmacological blockade of dopamine transmission.  相似文献   

18.
Inferring connectivity in neuronal networks remains a key challenge in statistical neuroscience. The “common input” problem presents a major roadblock: it is difficult to reliably distinguish causal connections between pairs of observed neurons versus correlations induced by common input from unobserved neurons. Available techniques allow us to simultaneously record, with sufficient temporal resolution, only a small fraction of the network. Consequently, naive connectivity estimators that neglect these common input effects are highly biased. This work proposes a “shotgun” experimental design, in which we observe multiple sub-networks briefly, in a serial manner. Thus, while the full network cannot be observed simultaneously at any given time, we may be able to observe much larger subsets of the network over the course of the entire experiment, thus ameliorating the common input problem. Using a generalized linear model for a spiking recurrent neural network, we develop a scalable approximate expected loglikelihood-based Bayesian method to perform network inference given this type of data, in which only a small fraction of the network is observed in each time bin. We demonstrate in simulation that the shotgun experimental design can eliminate the biases induced by common input effects. Networks with thousands of neurons, in which only a small fraction of the neurons is observed in each time bin, can be quickly and accurately estimated, achieving orders of magnitude speed up over previous approaches.  相似文献   

19.
Neuroimaging has identified many correlates of emotion but has not yet yielded brain representations predictive of the intensity of emotional experiences in individuals. We used machine learning to identify a sensitive and specific signature of emotional responses to aversive images. This signature predicted the intensity of negative emotion in individual participants in cross validation (n =121) and test (n = 61) samples (high–low emotion = 93.5% accuracy). It was unresponsive to physical pain (emotion–pain = 92% discriminative accuracy), demonstrating that it is not a representation of generalized arousal or salience. The signature was comprised of mesoscale patterns spanning multiple cortical and subcortical systems, with no single system necessary or sufficient for predicting experience. Furthermore, it was not reducible to activity in traditional “emotion-related” regions (e.g., amygdala, insula) or resting-state networks (e.g., “salience,” “default mode”). Overall, this work identifies differentiable neural components of negative emotion and pain, providing a basis for new, brain-based taxonomies of affective processes.  相似文献   

20.
Understanding typical and atypical development remains one of the fundamental questions in developmental human neuroscience. Traditionally, experimental paradigms and analysis tools have been limited to constrained laboratory tasks and contexts due to technical limitations imposed by the available set of measuring and analysis techniques and the age of the subjects. These limitations severely limit the study of developmental neural dynamics and associated neural networks engaged in cognition, perception and action in infants performing “in action and in context”. This protocol presents a novel approach to study infants and young children as they freely organize their own behavior, and its consequences in a complex, partly unpredictable and highly dynamic environment. The proposed methodology integrates synchronized high-density active scalp electroencephalography (EEG), inertial measurement units (IMUs), video recording and behavioral analysis to capture brain activity and movement non-invasively in freely-behaving infants. This setup allows for the study of neural network dynamics in the developing brain, in action and context, as these networks are recruited during goal-oriented, exploration and social interaction tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号