首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acquiring sufficient nutrients is particularly important for insects that are unable to synthesize certain nutrient types de novo, as is the case for numerous parasitoid species that do not synthesize lipids. The lipid reserves of parasitoids are acquired from a single host during larval development. This imposes constraints on the quantity and quality of available lipids. In the present study, the lipid dynamics throughout the trophic cascade are investigated by measuring lipogenic ability, modifications in fatty acid composition and host exploitation efficiency in species at different trophic positions within the community of parasitoids associated with the gall wasp Diplolepis rosae L. (Hymenoptera: Cynipidae). The results obtained show that lipid levels remain stable or decline after feeding in all species, indicating that none of the wasps synthesize lipids. Fatty acid composition is highly similar between the gall wasp, parasitoid and hyperparasitoid species, with the exception of the parasitoid Orthopelma mediator Thunberg (Hymenoptera: Ichneumonidae). The divergence of fatty acid composition in O. mediator suggests that this species is able to modify its fatty acid composition after the consumption of host lipids. The efficiency of exploitation of host resource, in terms of dry body mass acquired, varies among the species (41–70%), although it is high overall compared with the efficiencies reported in other animals. Hence, for parasitoid wasps that lack lipid synthesis capabilities, the efficiency of host exploitation is high and fatty acids are consumed directly from the host without modification, leading to stable fatty acid compositions throughout the trophic cascade.  相似文献   

2.
Phylogeographic studies of flora in species-rich south-western Australia point to complex evolutionary histories, reflecting patterns of persistence and resilience to climatic changes during the Pleistocene. We asked whether coastal areas of the mid-west and south, as well as granite outcrops and inland ranges, have acted as major refugia within this region during Pleistocene climatic fluctuations by analysing phylogeographic patterns in the shrub Calothamnus quadrifidus R.Br. (Myrtaceae). We determined variation in chloroplast DNA data for 41 populations across the geographic range. Relationships and major clades were resolved using parsimony and Bayesian analyses. We tested for demographic and spatial expansion of the major clades and estimated clade divergence dates using an uncorrelated, lognormal relaxed clock based on two conservative chloroplast mutation rates. Two distinct phylogeographic clades were identified showing divergence during the Pleistocene, consistent with other phylogeographic studies of south-west Australian flora, emphasising the impact of climatic oscillations in driving divergence in this landscape. The southern clade was more diverse, having higher haplotype diversity and greater genetic structure, while the northern clade showed evidence of fluctuation in population size. Regions of high haplotype diversity with adjacent areas of low diversity observed in each clade indicated the locations of two coastal refugia: one on the south coast and another along the mid-west coast. This is the first evidence for major Pleistocene refugia using chloroplast genetic data in a common, widespread species from this region.  相似文献   

3.
We investigated interspecific competition between Campoletis chlorideae Uchida (Hymenoptera: Ichneumonidae) and Microplitis mediator (Haliday) (Hymenoptera: Braconidae) in their host, the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) under laboratory conditions. Cotton bollworm larvae were allowed to be parasitized by both wasp species simultaneously or sequentially at different time intervals. When host larvae were parasitized simultaneously by both parasitoids, the majority of the cocoons produced were of M. mediator. When host larvae were parasitized initially by M. mediator followed by C. chlorideae at 12 or 24 h, parasitoids emerging from the multiparasitized hosts were mainly M. mediator. In contrast, when host larvae were parasitized initially by C. chlorideae, followed by M. mediator 12 or 24 h later, parasitoids emerging from the multiparasitized hosts were mainly C. chlorideae. Dissections of host larvae at various time intervals after parasitization by the two parasitoids showed that first instars of M. mediator could physically attack the larvae of C. chlorideae, but not the eggs of C. chlorideae. When a host was parasitized by both wasp species sequentially, more host larvae died and the number of wasp offspring was significantly reduced compared to a host parasitized by only one wasp. Conversely, in simultaneous multiparasitism, the host mortality and wasp offspring production were not significantly different from those parasitized by single wasp species.  相似文献   

4.
Trade-offs amongst life history traits is a major theme in evolutionary biology. Parasitoid wasps are important biological control agents and make excellent organisms to examine trade-offs in fitness related traits such as size, development rate and survival. Here, we examined trait-related trade-offs in 2 solitary endoparasitoids developing in different stages (or instars) of the same caterpillar host, the cabbage moth Mamestra brassicae. Microplitis mediator is a small specialist parasitoid that attacks first (L1) to third (L3) instars of M. brassicae; Meteorus pulchricornis is a larger highly generalized parasitoid that attacks L1–L4 instars of the same host species. When developing in early host instars (e.g. L1–L2), both parasitoids differently traded-off size against development time. In M. mediator, adult body mass was smaller in wasps developing in L1 than in L2 and L3 hosts, whereas development time was unaffected by instar. By contrast, adult body mass in M. pulchricornis was smaller and development time longer when developing in L1 and L2 than in L3 and L4 instars. Periodic starvation of M. brassicae caterpillars parasitized by M. pulchricornis further reduced adult mass and extended development time of wasps in L2 (but not L4) hosts. Maximum egg load in M. pulchricornis (but not M. mediator) was correlated with adult female body size. Our results imply that rapid development time is more important than body size for fitness in both species, although in M. pulchricornis both development time and adult size are traded off in determining the optimal phenotype. Developing a better understanding of association-specific patterns of development in parasitoids can assist in the optimization of mass rearing of these insects for biological control.  相似文献   

5.
Hymenopterous parasitoids of grass flies of the family Chloropidae from the Palaearctic and Nearctic regions are reviewed. These parasitoids belong to four superfamilies and 16 families of Hymenoptera and were reared from 39 species of Chloropidae in the Palaearctic (less than 6% of the fauna) and only from 10 species in the Nearctic Region. The majority of parasitoids are oligo-or polyphagous species. To a certain degree, the parasitoids are specialized on one of the three host groups: (1) species developing in shoots of cereal and meadow grasses; (2) forest species developing in cones of coniferous trees; and (3) species associated with the common reed, Phragmites australis. In the Palaearctic Region, the majority of parasitoids (91 species) were reared from Oscinella frit L. s. 1.; a significantly smaller number of these parasites is known from this host in the Nearctic Region, nearly half of the parasitoids being common for both regions. The next large group of parasitoids is associated with gall-inducing species of the genus Lipara Meigen (59 species) developing in the common reed. By contrast with two other groups of parasitoids, this one includes many species of the family Ichneumonidae. It should be noted that taxonomic diversity at the third trophic level is markedly greater than at the second level.  相似文献   

6.
Microctonus aethiopoides Loan (Hymenoptera: Braconidae) was introduced from Morocco to Australia and New Zealand for biological control of the lucerne pest, Sitona discoideus. Previous research has indicated that M. aethiopoides intraspecific genetic variation is more strongly associated with weevil host species than geographic origin. Cytochrome c oxidase subunit 1 (COI) sequences from parasitoids dissected from weevils collected during a survey of lucerne-growing areas in Morocco allowed us to further test this hypothesis. As found previously, there were two strong clades in M. aethiopoides with no geographical basis to this structure. Earlier research suggested that intraspecific variability within M. aethiopoides was related to weevil host genus (Sitona vs. Hypera), and the analysis confirmed that one of the clades corresponded strongly with the host Sitona discoideus. The other clade, however, previously characterised by parasitoids from Hypera postica also included parasitoids dissected from Charagmus spp., which is a sister genus to Sitona. It is suggested that food plant associations of the host weevils might have had an influence on the evolutionary history of the parasitoid.  相似文献   

7.
How communities of natural enemies, such as parasitoids, adapt to the range expansion of their hosts or the arrival of a novel invasive host is an important question in invasion biology. Do parasitoids track the expansion of their hosts from their shared native range? Do they locally adapt both behaviorally and physiologically to the arrival of a novel species by shifting hosts? Few studies have addressed those questions, yet they are important to develop efficient methods to manage invasive species. Here we focus on Pnigalio mediterraneus Ferriére and Delucchi (Hymenoptera: Eulophidae), an important parasitoid of two major agricultural and ornamental pests, the olive fruit fly Bactrocera oleae Rossi (Diptera: Tephritidae) and the horse chestnut leafminer Cameraria ohridella Deschka & Dimic (Lepidoptera: Gracillariidae). C. ohridella recently invaded Europe starting from the Southern Balkans, whereas B. oleae has been associated since the Quaternary with wild olives in the Mediterranean, where it largely spread after the domestication of cultivated olives. We used two markers, the ribosomal spacer ITS2 and the mitochondrial gene COI. Although the ITS2 dataset provided little variation and no phylogeographic signal, analysis of mtDNA of 188 individuals of P. mediterraneus from 54 European localities allowed us to identify 53 haplotypes. Both nucleotide and haplotype diversity were higher for Mediterranean samples, and from samples reared from B. oleae. The statistical parsimony network identified one haplotype as the most frequent, ancestral and mainly associated with C. ohridella. Our findings suggest that P. mediterraneus locally host switched to C. ohridella from other hosts in the Balkans and later tracked the horse chestnut leafminer invasion over Europe. Therefore both host-tracking and ecological sorting could explain the current distribution of P. mediterraneus haplotypes.  相似文献   

8.
The Himalayan mountain arc is one of the hotspots of biodiversity on earth, and species diversity is expected to be especially high among insects in this region. Little is known about the origin of the Himalayan insect fauna. With respect to the fauna of high altitude cloud forests, it has generally been accepted that Himalayan lineages are derived from ancestors that immigrated from Western Asia and from adjacent mountainous regions of East and Southeast Asia (immigration hypothesis). In this study, we sought to test a Tibetan Origin as an alternative hypothesis for groups with a poor dispersal ability through a phylogeographic analysis of the Ethira clade of the genus Pterostichus. We sequenced COI mtDNA and the 18S and 28S rDNA genes in 168 Pterostichini specimens, including 46 species and subspecies of the Ethira clade. In our analysis, we were able to show that the Ethira clade is monophyletic and, thus, represents a Himalayan endemic clade, supporting endemism of two of the basal lineages to the Central Himalaya and documenting large distributional gaps within the phylogeographic structure of the Ethira clade. Furthermore, the molecular data strongly indicate very limited dispersal abilities of species and subspecies of these primary wingless ground beetles. These results are consistent with the hypothesis of a Tibetan Origin, which explains the evolution, diversity and distribution of the Himalayan ground beetle Ethira clade much more parsimoniously than the original immigration hypothesis.  相似文献   

9.
The widespread lycaenid butterfly Tongeia fischeri is distributed from eastern Europe to northeastern Asia and represented by three geographically isolated populations in Japan. In order to clarify the phylogeographic history of the species, we used sequences of three mitochondrial (COI, Cyt b and ND5) and two nuclear (Rpl5 and Ldh) genes of 207 individuals collected from 55 sites throughout Japan and five sites on the Asian continent. Phylogenetic trees and the median-joining network revealed six evolutionary mitochondrial haplotype clades, which corresponded to the geographic distribution of the species. Common ancestors of Japanese T. fischeri might have come to Japan during the mid-Pleistocene by multiple dispersals of continental populations, probably via a land bridge or narrow channel between western Japan and the Korean Peninsula. The geographical patterns of variation of mitochondrial and nuclear markers are discordant in northeastern Kyushu, possibly as a result of introgressive hybridization during the ancient contact between the Kyushu and Shikoku populations in the last glacial maximum. The phylogeographic pattern of T. fischeri in Japan are probably related to the geological history, Pleistocene climatic oscillations and distribution of the host plant.  相似文献   

10.
Little is known about the evolutionary history of most complex multi‐trophic insect communities. Widespread species from different trophic levels might evolve in parallel, showing similar spatial patterns and either congruent temporal patterns (Contemporary Host‐tracking) or later divergence in higher trophic levels (Delayed Host‐tracking). Alternatively, host shifts by natural enemies among communities centred on different host resources could disrupt any common community phylogeographic pattern. We examined these alternative models using two Megastigmus parasitoid morphospecies associated with oak cynipid galls sampled throughout their Western Palaearctic distributions. Based on existing host cynipid data, a parallel evolution model predicts that eastern regions of the Western Palaearctic should contain ancestral populations with range expansions across Europe about 1.6 million years ago and deeper species‐level divergence at both 8–9 and 4–5 million years ago. Sequence data from mitochondrial cytochrome b and multiple nuclear genes showed similar phylogenetic patterns and revealed cryptic genetic species within both morphospecies, indicating greater diversity in these communities than previously thought. Phylogeographic divergence was apparent in most cryptic species between relatively stable, diverse, putatively ancestral populations in Asia Minor and the Middle East, and genetically depauperate, rapidly expanding populations in Europe, paralleling patterns in host gallwasp species. Mitochondrial and nuclear data also suggested that Europe may have been colonized multiple times from eastern source populations since the late Miocene. Temporal patterns of lineage divergence were congruent within and across trophic levels, supporting the Contemporary Host‐tracking Hypothesis for community evolution.  相似文献   

11.
Patterns of common recolonization routes from glacial refugia to Central Europe during the Pleistocene are generalized to paradigms of postglacial recolonization in Europe. Recent studies indicate, however, that the actual phylogeographic history of many species might be more complex and cannot be simplified to generalized patterns. Burnet moths of the Zygaena transalpina complex represent a group of closely related taxa, which are considered as a typical example for these generalized patterns. At present, three groups are recognized that are assumed to have spread from three classical refugia in Western Europe, Italy and the Balkans to Central Europe. Here, we re‐investigate their phylogeography using a combined molecular and morphometric approach. Phylogenetic and nested clade phylogeographic analyses of 476 samples from 55 localities taken from Southern and Central Europe reveal that the Zygaena transalpina complex consists of three distinct haplotype clusters, which geographically roughly correspond to possible refugia in Western Europe, Italy and the Balkans. A synthesis of the data with a geometric morphometry dataset of 425 specimens from 46 localities corroborates this molecular result but differs in several aspects. Important new aspects are multiple refugia of the western ‘hippocrepidis’ branch and micro‐habitats within the Alps of the central ‘transalpina’ branch. Further, our results display a more complex phylogeographic pattern for this species complex, which is not tractable with a rigid, generalized pattern.  相似文献   

12.
Phylogeographic studies are often focused on temperate European species with relict footholds in the Mediterranean region. Past climatic oscillations usually induced range contractions and expansions from refugial areas located in southern Europe, and spatial distribution of genetic diversity show that northward expansions were usually pioneer-like. Actually, few studies have focused on circum-Mediterranean species, which probably were not influenced in the same way by climatic oscillations. We present the phylogeography of the bark beetle Tomicus destruens, which is restricted to the whole Mediterranean basin and the Atlantic coasts of North Africa and Portugal. We systematically sequenced 617 bp of the mitochondrial genes COI and COII for 42 populations (N = 219). Analysis revealed 53 haplotypes geographically structured in two clades, namely eastern and western clades, that diverged during the Pleistocene. A contact zone was identified along the Adriatic coast of Italy. Interestingly, we found contrasting levels of genetic structure within each clade. The eastern group was characterized by a significant phylogeographic pattern and low levels of gene flow, whereas the western group barely showed a spatial structure in haplotype distribution. Moreover, the main pine hosts were different between groups, with the Aleppo-brutia complex in the east and the maritime pine in the west. Potential roles of host species, climatic parameters and geographical barriers are discussed and the phylogeographic patterns are compared to classical models of postglacial recolonization in Europe.  相似文献   

13.
Bo Stille 《Oecologia》1984,63(3):364-369
Summary The univoltine cynipid gall wasp Diplolepis rosae reproduces by an obligate homozygosity promoting system known as gamete duplication. The wasp is confined to roses (Rosa spp) on which it induces large, complex and multichambered galls. In southern Sweden, D. rosae was found to parasitize Rosa canina, R. dumalis, R. rubiginosa, R. villosa, R. sherardi and R. rubrifolia, but not R. majalis and R. rugosa. The distribution of galls shows that there are differences in the relation between wasp and hosplant with respect both to species and individual plants. There is a positive correlation between wasp size and gall (clutch) size. Parasitoid pressure was found to be high, causing D. rosae an estimated average larval loss of approximately 75%, mainly due to the attack of the ichneumonid wasp Orthopelma mediator. The very common cynipid inquiline Periclistus brandtii does not seem to have any negative effects. Overall parasitism and probability of no hatched offspring per gall decrease with increasing gall (clutch) size. The probability of loosing all of a given number of offspring decreases with the number of galls produced. It is suggested that D. rosae, in order to escape parasitoids, needs high ability to establish new colonies. Hence the production of many comparatively small galls, which increases the chance of leaving any offspring, rather than the production of few large galls, maximizing the number of offspring, should be favoured by selection.  相似文献   

14.
The pinewood nematode, Bursaphelenchus xylophilus, is one of the greatest threats to coniferous forests worldwide, causing severe ecological damage and economic loss. The biology of B. xylophilus is similar to that of its closest relative, B. mucronatus, as both species share food resources and insect vectors, and have very similar morphological characteristics, although little pathogenicity to conifers has been associated with B. mucronatus. Using both nuclear and mitochondrial DNA markers, we show that B. xylophilus and B. mucronatus form distinct phylogenetic groups with contrasting phylogeographic patterns. B. xylophilus presents lower levels of intraspecific diversity than B. mucronatus, as expected for a species that evolved relatively recently through geographical or reproductive isolation. Genetic diversity was particularly low in recently colonised areas, such as in southwestern Europe. By contrast, B. mucronatus displays high levels of genetic diversity and two well-differentiated clades in both mitochondrial and nuclear DNA phylogenies. The lack of correlation between genetic and geographic distances in B. mucronatus suggests intense gene flow among distant regions, a phenomenon that may have remained unnoticed due to the reduced pathogenicity of the species. Overall, our findings suggest that B. xylophilus and B. mucronatus have different demographic histories despite their morphological resemblance and ecological overlap. These results suggest that Bursaphelenchus species are a valuable model for understanding the dispersion of invasive species and the risks posed to native biodiversity and ecosystems.  相似文献   

15.
Population dynamics of a leafminer,Chromatomyia suikazurae (Agromyzidae, Diptera) and its parasitoid community were studied for ten years at seven natural populations along an altitudinal gradient in Japan. This species which mines leaves of a forest shrub,Lonicera gracilipes (Caprifoliaceae), was attacked by 25 hymenopterous parasitoid species. Annually, the parasitoid community structure varied less within a population than among populations. The seven parasitoid communities were clustered into three groups corresponding to the altitudinal gradient: (a) lowland communities dominated by late-attacking, generalist pupal idiobiont eulophids and with highest species diversity, (b) hillside communities dominated by an early-attacking, specialist larval-pupal koinobiont braconid and (c) highland communities dominated by an early-attacking, generalist larval idiobiont eulophid. Annual changes of the host larval densities among the local populations were largely synchronous rather than cyclic. Among these populations, host density levels and mortality patterns greatly varied. By analyzing these inter-populational differences of host mortality patterns, the following conclusions were drawn: (1) The host mortality patterns were determined by the host utilization patterns of the locally dominant species. (2) The host pupal mortality but not larval mortality was related to species diversity but not to species richness itself of each parasitoid community. (3) Density dependence was detected only in pupal mortality at a lowland population dominated by late-attacking pupal parasitoids. These results suggest that interspecific interactions of parasitoids add additive effects to host population dynamics dissimilarly among local populations with different parasitoid communities.  相似文献   

16.
Island biotas provide a great opportunity to study not only the phylogeographic patterns of a group of species, but also to explore the differentiation in their coevolutionary interactions. Drosophila and their parasitoids are exemplary systems for studying complex interaction patterns. However, there is a lack of studies combining interaction-based and molecular marker-based methods. We applied an integrated approach combining phylogeography, interaction, and host-choice behavior studies, with the aim to understand how coevolutionary interactions evolve in Drosophila-parasitoid island populations. The study focused on the three most abundant Drosophila species in Ryukyu archipelago and Taiwan: D. albomicans, D. bipectinata, and D. takahashii, and the Drosophila-parasitoid Leptopilina ryukyuensis. We determined mitochondrial COI haplotypes for samples representing five island populations of Drosophila and four island populations of L. ryukyuensis. We additionally sequenced parts of the autosomal Gpdh for Drosophila samples, and the ITS2 for parasitoid samples. Phylogenetic and coalescent analyses were used to test for demographic events and to place them in a temporal framework. Geographical differences in Drosophila-parasitoid interactions were studied in host-acceptance, host-suitability, and host-choice experiments. All four species showed species-specific phylogeographic patterns. A general trend of the haplotype diversity increasing towards the south was observed. D. albomicans showed very high COI haplotype diversity, and had the most phylogeographically structured populations, with differentiation into the northern and the southern population-group, divided by the Kerama gap. Differentiation in host suitability was observed only between highly structured populations of D. albomicans, possibly facilitated by restricted gene flow. Differentiation in host-acceptance in D. takahashii, and host-acceptance and host-choice in L. ryukyuensis was found, despite there being no differentiation in these two species according to molecular markers. Host choice assays show that L. ryukyuensis populations that have had more time to coevolve adapt their behavior to exploit the most suitable host – D. albomicans. L. ryukyuensis parasitoids on border ranges may, on the other hand, benefit from broader host-acceptance, that may facilitate adaptation to uncertain and variable environments. All results indicate that Drosophila-parasitoid populations in the Ryukyu archipelago and Taiwan have different evolutionary trajectories, and coevolve in a dynamic, complex, and local-specific way.  相似文献   

17.
We examined the phylogeography of three south-east Australian trees (Eucalyptus delegatensis, Eucalyptus obliqua, and Eucalyptus regnans) with different tolerances, in terms of cold, drought, fire and soil to explore whether species with different ecologies share major phylogeographic patterns. A second aim of this study was to examine geographic patterns of chloroplast DNA (cpDNA) haplotype sharing among the three study species. Trees of E. delegatensis (n?=?120), E. obliqua (n?=?265) and E. regnans (n?=?270) were genotyped with five cpDNA microsatellite markers. The species shared major phylogeographic disjunctions, and common patterns at proposed glacial refugia (generally high haplotype diversity) and areas thought to have been treeless during the Last Glacial Maximum (LGM) (low diversity). Inter-specific sharing of haplotypes was extensive, and fixation of shared, regional haplotypes was more frequent in areas postulated as having been treeless at the LGM. Despite ecological differences, chloroplast microsatellite data suggest the three species have responded to past climatic changes in a similar way, by persisting in multiple, generally common refugia. We suggest that the natural ability of eucalypt species to hybridise with others with quite different or broader ecological tolerances may provide an “insurance policy” for response to rapidly changing abiotic conditions.  相似文献   

18.
Recent phylogeographic studies of animal taxa in California have revealed common geographic patterns of evolutionary divergence and genetic diversity that are generally attributable to landscape influences. However, there remains a paucity of knowledge on the evolution of freshwater taxa in southern California. Here, we investigate phylogeographic patterns in a stream-dwelling frog (Pseudacris cadaverina). Two hundred and twenty-one individuals were collected from 46 populations across the species’ range in southern California. Using 1100 bp of sequence data from cytochrome b and tRNA-Glu, we conducted phylogenetic analyses, analysis of molecular variance, and nested clade phylogeographic analysis to gain insight into the factors contributing to the distribution of genetic diversity in P. cadaverina. We tested for evidence of two putative phylogeographic breaks and tested hypotheses that genetic diversity in this species is partitioned into (1) major watersheds, (2) mountain ranges, and (3) coastal and desert regions. Our results suggest that the eastern Transverse Ranges are the center of origin for extant P. cadaverina lineages and that the observed genetic structure in this species was established during the Pleistocene Epoch. There is strong support for three major haplotype groups and a Transverse Range break in P. cadaverina that is concordant with breaks found in numerous other taxa. The distribution of genetic diversity in P. cadaverina is due in large part to the separation of populations into different major watersheds and mountain ranges. Gene flow appears to be generally limited among disjunct populations throughout the region and some desert populations have been isolated by historical habitat fragmentation.  相似文献   

19.
B. Stille 《Genetica》1985,67(2):145-151
The genetic diversity of the parthenogenetic gall waspDiplolepis rosae is investigated by a survey of 26 enzyme loci.D. rosae, which is confined to roses (Rosa) and reproduces by obligate gamete duplication, was sampled from five host-plant species in southern Sweden. Additional galls were obtained from Germany and Greece. Eight genotypes were determined on the basis of nine variable loci. The genotypes are not correlated to host-plant species, and in some cases differ in geographical distribution, indicating adaptation to climatic factors. The consequences of gamete duplication for the genetic diversity and ecology ofD. rosae are discussed.  相似文献   

20.
Myriophora is the most species‐rich group of parasitoids that attack toxic, chemically defended millipedes in the superorder Juliformia and order Polydesmida—a resource that few insect predators and parasitoids are able to exploit. Worldwide, there are an estimated 200 species of Myriophora, with the majority of the diversity centred in the Neotropical region. The phylogeny of Myriophora is unknown, biogeographical patterns are not documented, and known host associations have not been assessed in a phylogenetic context. We provide the first phylogenetic study of the genus from a data set composed of 52 taxa primarily from the Neotropical region including 10 outgroups, 40 morphological characters, and molecular data from three mitochondrial (16S, COI and ND1) and one nuclear marker (AK). We find that Myriophora dispersed from the New World to the Old World in a single event before subsequently spreading to the Afrotropical region. The ancestral hosts reconstructed for Myriophora are the benzoquinone‐producing Juliformia, and this association has been retained in the Old World clade. In the Neotropical region, Myriophora that are associated with cyanide‐producing polydesmidan millipedes are confined to a single clade that shows remarkably little genetic variation between clearly morphologically diagnosable species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号