首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
CD147 plays a critical role in the invasive and metastatic activity of hepatocellular carcinoma (HCC) cells by stimulating the surrounding fibroblasts to secrete matrix metalloproteinases (MMPs). Tumor cells adhesion to extracellular matrix (ECM) proteins is the first step to the tumor metastasis. MMPs degrade the ECM to promote tumor metastasis. The aim of this research was to investigate the inhibitory effects of stealth small interfering RNA (siRNA) against CD147 on HCC cell line (SMMC-7721) metastatic properties including invasion, adhesion to ECM, gelatinase production, focal adhesion kinase (FAK) and vinculin expression. Flow cytometry (FCM) and western blot assays were employed to detect the transfection efficiency of the stealth siRNA against CD147. Invasion assays and gelatin zymography were also used to detect the effects of stealth siRNA against CD147 on SMMC-7721 cells’ invasion and gelatinase production. The effects of stealth siRNA against CD147 on FAK and vinculiln expression in SMMC-7721 cells were also detected by western blot. The results showed that stealth siRNA against CD147 inhibited SMMC-7721 invasion, adhesion to ECM proteins, MMP-2 production, and FAK and vinculin expression. These findings indicate that CD147 is required for tumor cell invasion and adhesion. Perturbation of CD147 expression may have potential therapeutic uses in the prevention of MMP-2-dependent tumor invasion.  相似文献   

3.
Oxidative stress induction is a common effector pathway for commonly used chemotherapeutic agents like gemcitabine (GEM) in hepatocellular carcinoma (HCC) patients. However, GEM alone or in combination with oxiplatin hardly renders any survival benefits to HCC patients. Mitochondrial uncoupling protein 2 (UCP2) is known to suppress mitochondrial reactive oxygen species (ROS) generation, thus mitigating oxidative stress-induced apoptosis. We demonstrate in the present study, using a panel of HCC cell lines that sensitivity to GEM in HCC well correlate with the endogenous level of UCP2 protein expression. Moreover, ectopic overexpression of UCP2 in a HCC cell line with low endogenous UCP2 expression, HLE, significantly decreased mitochondrial superoxide induction by the anti-cancer drug GEM. Conversely, UCP2 mRNA silencing by RNA interference in HCC cell lines with high endogenous UCP2 expression significantly enhanced GEM-induced mitochondrial superoxide generation and apoptosis. Cumulatively, our results suggest a critical role for mitochondrial uncoupling in GEM resistance in HCC cell lines. Hence, synergistic targeting of UCP2 in combination with other chemotherapeutic agents might be more potent in HCC patients.  相似文献   

4.
Dysregulation of long noncoding RNAs (lncRNAs) plays important roles in carcinogenesis and tumor progression, including hepatocellular carcinoma (HCC). Small nucleolar RNA host gene 3 (SNHG3) has been considered as an lncRNA to be associated with a poor prognosis in patients with HCC. Here, we reported that SNHG3 expression was significantly higher in the highly metastatic HCC (HCCLM3) cells compared with the lowly metastatic HCC cells (Hep3B and PLC/PRF/5). Furthermore, forced expression of SNHG3 promoted cell invasion, epithelial-mesenchymal transition (EMT), and sorafenib resistance in HCC. Moreover, SNHG3 overexpression induced HCC cells EMT via miR-128/CD151 cascade activation. Clinically, our data revealed that increased SNHG3 expression is correlated with poor HCC survival outcomes and sorafenib response. These data suggest that SNHG3 may be a novel therapeutic target and a biomarker for predicting response to sorafenib treatment of HCC.  相似文献   

5.
6.
Cancer stem cells promote tumorigenesis and progression of hepatocellular carcinoma (HCC). Recently, emerging evidence indicates tumor-associated macrophages (TAMs) play an important role in tumor progression. However, TAMs often occurs with unknown mechanisms. As an important mediator in intercellular communications, exosomes secreted by host cells mediate the exchange of genetic materials and proteins, which involves tumor aggressiveness. The aim of the study was to investigate whether exosomes derived from TAMs mediate stem cell properties in HCC. TAMs were isolated from the tissues of HCC. microRNA (miRNA) expression profiles of TAMs were analyzed using miRNA microarray. In vitro cell coculture was further conducted to investigate the crosstalk between TAMs and tumor cells mediated by TAMs exosomes. In this study, we showed that TAMs exosomes promote HCC cell proliferation and stem cell properties. Using miRNA profiles assay, we identified significantly lower levels of miR-125a and miR-125b in exosomes and cell lysate isolated from TAMs. Functional studies revealed that the HCC cells were treated with TAM exosomes or transfected with miR-125a/b suppressed cell proliferation and stem cell properties by targeting CD90, a stem cell marker of HCC stem cells. The study indicated that miR-125a/b targeting CD90 played important roles in cancer stem cells of HCC.  相似文献   

7.
8.
Hepatocellular carcinoma (HCC) is the most common malignant liver disease in the world. However, the mechanistic relationships among various genes and signaling pathways are still largely unclear. In this study, we aimed to elucidate potential core candidate genes and pathways in HCC. The expression profiles GSE14520, GSE25097, GSE29721, and GSE62232, which cover 606 tumor and 550 nontumour samples, were downloaded from the Gene Expression Omnibus (GEO) database. Furthermore, HCC RNA-seq datasets were also downloaded from the Cancer Genome Atlas (TCGA) database. The differentially expressed genes (DEGs) were filtered using R software, and we performed gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis using the online databases DAVID 6.8 and KOBAS 3.0. Furthermore, the protein-protein interaction (PPI) network complex of these DEGs was constructed by Cytoscape software, the molecular complex detection (MCODE) plug-in and the online database STRING. First, a total of 173 DEGs (41 upregulated and 132 downregulated) were identified that were aberrantly expressed in both the GEO and TCGA datasets. Second, GO analysis revealed that most of the DEGs were significantly enriched in extracellular exosomes, cytosol, extracellular region, and extracellular space. Signaling pathway analysis indicated that the DEGs had common pathways in metabolism-related pathways, cell cycle, and biological oxidations. Third, 146 nodes were identified from the DEG PPI network complex, and two important modules with a high degree were detected using the MCODE plug-in. In addition, 10 core genes were identified, TOP2A, NDC80, FOXM1, HMMR, KNTC1, PTTG1, FEN1, RFC4, SMC4, and PRC1. Finally, Kaplan-Meier analysis of overall survival and correlation analysis were applied to these genes. The abovementioned findings indicate that the identified core genes and pathways in this bioinformatics analysis could significantly enrich our understanding of the development and recurrence of HCC; furthermore, these candidate genes and pathways could be therapeutic targets for HCC treatment.  相似文献   

9.
Retinoids play an important role in the regulation of cell growth and death. Synthetic retinoid CD437 reportedly induces apoptosis in various cancer cell lines. However, the mechanism of inducing apoptosis in hepatocellular carcinoma (HCC) cells by this agent remains to be clarified. In this study, we investigated the signaling pathway by which CD437 induces apoptosis in HCC cell lines. Apoptosis of six human HCC cell lines was induced by treatment with CD437. Caspase-3 and -9 were activated by CD437, suggesting that the apoptosis is mediated by mitochondrial pathways. Consistent with these findings, the treatment with CD437 upregulated Bax protein, downregulated Bcl-2 protein and released cytochrome c into the cytoplasm. Moreover, rhodamine123 staining revealed mitochondrial depolarization in the cells treated with CD437. These data of the present study suggest that CD437 induces apoptosis in HCC cells via mitochondrial pathways.  相似文献   

10.
Hepatocellular carcinoma (HCC) is known as a frequent type of primary cancer in the liver, and it is the third-most common cause of cancer-related death all over the world. However, the molecular mechanism in the progression of HCC is still unclear. The current study was designed to investigate the expression and function of microRNA-34a (miR-34a) in HCC. In HCC tissues and cells, the expression levels of miR-34a were analyzed by quantitative real-time polymerase chain reaction. The association between the level of miR-34a and hexokinase (HK)-1 was also investigated via luciferase reporter assay. Cell viability and proliferation were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry. To assess whether miR-34a can limit tumor growth in vivo, animal models and terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used for examining the role of miR-34a on the development of HCC and cell apoptosis. The expression level of miR-34a was reduced in HCC samples and cells. The expression of miR-34a was associated with the viability and proliferation capacity of HCC cells, and miR-34a could inhibit HCC cells proliferation by inhibiting HK1. In the mouse model of HCC, volumes and weight of the tumors were significantly decreased by transfection with miR-34a mimic compared with the control group. Furthermore, miR-34a mimics could induce apoptosis in a greater proportion of cells compared with the control group. Taken together, the data may provide some novel insights into the molecular mechanism of miR-34a and HK1 in the progression of HCC. Thus, miR-34a/HK1 axis might be a novel promising therapeutic target for treating HCC.  相似文献   

11.
12.
13.
Hepatocellular carcinoma (HCC) is a high incidence and mortality malignant tumour globally. Betulinic acid (BA) is a pentacyclic triterpenoid with potential pro‐apoptotic activities which widely found in many plants. In this study, we determined the effects of BA on proliferation, apoptosis, invasion, and metastasis in HCC cell lines and on tumour growth and pulmonary metastasis in mice. The results suggested that BA could inhibit cell viability and proliferation of HCC cell lines including HepG2, LM3, and MHCC97H. In addition, BA induced apoptosis of HepG2 cells characterised condensed nuclei and nuclear fragmentation. Moreover, western blot analysis showed that BA‐induced apoptosis associated with increasing of pro‐apoptotic protein Bax and cleaved caspase‐3 and decreasing of anti‐apoptotic protein Bcl‐2. Meanwhile, BA also reduced the reactive oxygen species (ROS) level. Furthermore, BA also significantly inhibited HCC growth in vivo and blocked pulmonary metastasis of HCC by regulating the metastasis‐related proteins including MMP‐2, MMP‐9, and TIMP2 without obvious toxicity. In all, the present study suggested that BA might be a promising anti‐HCC drug candidate by inhibiting proliferation, inducing apoptosis, and blocking metastasis.  相似文献   

14.
GNAO1 (guanine nucleotide-binding protein, α-activating activity polypeptide O) is a member of the subunit family of Gα proteins, which are molecular switchers controlling signal transductions and whose deregulation can promote oncogenesis. HCC (hepatocellular carcinoma) is one of the malignant tumours around the world, which summons novel biomarkers or targets for effective diagnosis and treatments. The present study was aimed to investigate the expression of GNAO1 in HCC patient tissues and the possible mechanisms by which it took effects. The expression of GNAO1 was detected by IHC (immunohistochemistry) and real-time qPCR (quantitative PCR). Cell proliferation test and cell senescence test were then performed to explore the role of GNAO1 in the occurrence and development of HCC. It was revealed that the level of GNAO1 was comparably less in HCC tissues than in the adjacent tissues. Furthermore, down-regulation of GNAO1 increased cell proliferation, while suppressing the senescence of HCC cells. In conclusion, our findings revealed and confirmed the importance of GNAO1 in HCC, indicating that GNAO1 is a potential biomarker as well as a promising therapeutic target for HCC.  相似文献   

15.
16.
17.
High mortality among hepatocellular carcinoma (HCC) patients reflects both late diagnosis and low curability, due to pharmacoresistance. Taxol (TAX) is toxic for many human HCC-derived cell lines, yet its clinical efficacy on HCCs is poor. Combining TAX with other drugs appears a promising possibility to overcome such refractoriness. We analyzed whether combining tumor necrosis factor (TNF) with TAX would improve their toxicity. Human HCC-derived cell lines were treated with TAX or TNF, alone or combined. Apoptosis was assessed by morphology and flow-cytometry. Several pro- and anti-apoptotic molecules were evaluated by western blotting and/or enzymatic assay. After a 24 hour treatment, TNF was ineffective and TAX modestly cytotoxic, whereas HCC cells were conditionally sensitized to TNF by TAX. Indeed some relevant parameters were shifted to a prodeath setting: TNF-receptor 1 was increased, SOCS3, c-FLIP and pSTAT3 were markedly downregulated. These observations provide a significant clue to critically improve the drug susceptibility of HCC cells by combining 2 agents, TAX and TNF. The sequential application of TAX at a low dosage followed by TNF for only a short time triggered a strong apoptotic response. Of interest, prior TAX administration could also sensitize to TNF-induced apoptosis in the Yoshida AH-130 hepatoma transplanted in mice. Therefore, scrutinizing the possibility to develop similar combination drug regimens in suitable preclinical models seems highly advisable.  相似文献   

18.
Increasing autophagy is beneficial for curing hepatocellular carcinoma (HCC). Damage-regulated autophagy modulator (DRAM) was recently reported to induce apoptosis by mediating autophagy. However, the effects of DRAM-mediated autophagy on apoptosis in HCC cells remain unclear. In this study, normal hepatocytes (7702) and HCC cell lines (HepG2, Hep3B and Huh7) were starved for 48 h. Starvation induced apoptosis and autophagy in all cell lines. We determined that starvation also induced DRAM expression and DRAM-mediated autophagy in both normal hepatocytes and HCC cells. However, DRAM-mediated autophagy was involved in apoptosis in normal hepatocytes but not in HCC cells, suggesting that DRAM-mediated autophagy fails to induce apoptosis in hepatoma in response to starvation. Immunoblot and immunofluorescence assays demonstrated that DRAM translocated to mitochondria and induced mitophagy, which led to apoptosis in 7702 cells. In HCC cells, starvation also activated the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which blocks the translocation of DRAM to mitochondria through the binding of p-AKT to DRAM in the cytoplasm. Inactivation of the PI3K/AKT pathway rescued DRAM translocation to mitochondria; subsequently, mitochondrial DRAM induced apoptosis in HCC cells by mediating mitophagy. Our findings open new avenues for the investigation of the mechanisms of DRAM-mediated autophagy and suggest that promoting DRAM-mediated autophagy together with PI3K/AKT inhibition might be more effective for autophagy-based therapy in hepatoma.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号