首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tang Y  Pan X  Chen Y  Tai PC  Sui SF 《PloS one》2011,6(1):e16498
The Sec translocase mediates the post-translational translocation of a number of preproteins through the inner membrane in bacteria. In the initiatory translocation step, SecB targets the preprotein to the translocase by specific interaction with its receptor SecA. The latter is the ATPase of Sec translocase which mediates the post-translational translocation of preprotein through the protein-conducting channel SecYEG in the bacterial inner membrane. We examined the structures of Escherichia coli Sec intermediates in solution as visualized by negatively stained electron microscopy in order to probe the oligomeric states of SecA during this process. The symmetric interaction pattern between the SecA dimer and SecB becomes asymmetric in the presence of proOmpA, and one of the SecA protomers predominantly binds to SecB/proOmpA. Our results suggest that during preprotein translocation, the two SecA protomers are different in structure and may play different roles.  相似文献   

2.
SecB, a molecular chaperone in Escherichia coli, binds a subset of precursor proteins that are exported across the plasma membrane via the Sec pathway. Previous studies showed that SecB bound directly to the mature region rather than to the signal sequence of the precursor protein. To determine the binding pattern of SecB and the mature region of the preprotein, here, we visualized the structure of the SecB/OmpA complex by electron microscopy. This complex is composed by two parts: the main density represents one SecB tetramer and the unfolded part of OmpA wrapping round it; the elongated smaller density represents the rest of OmpA. Each SecB protomer makes a different contribution to the binding of SecB with OmpA. The binding pattern between SecB tetramer and OmpA is asymmetric.  相似文献   

3.
The export of many E. coli proteins such as proOmpA requires the cytosolic chaperone SecB and the membrane-bound preprotein translocase. Translocase is a multisubunit enzyme with the SecA protein as its peripheral membrane domain and the SecY/E protein as its integral domain. SecB, by binding to proOmpA in the cytosol, prevents its aggregation or association with membranes at nonproductive sites. The SecA receptor binds the proOmpA-SecB complex (Kd approximately 6 x 10(-8) M) through direct recognition of both the SecB (Kd approximately 2 x 10(-7) M) as well as the leader and mature domains of the precursor protein. SecB has a dual function in stabilizing the precursor and in passing it on to membrane-bound SecA, the next step in the pathway. SecA itself is bound to the membrane by its affinity (Kd approximately 4 x 10(-8) M) for SecY/E and for acidic lipids. The functions of SecB and SecA as a two-stage receptor system are linked by their affinity for each other.  相似文献   

4.
In Escherichia coli , precursor proteins are targeted to the membrane-bound translocase by the cytosolic chaperone SecB. SecB binds to the extreme carboxy-terminus of the SecA ATPase translocase subunit, and this interaction is promoted by preproteins. The mutant SecB proteins, L75Q and E77K, which interfere with preprotein translocation in vivo , are unable to stimulate in vitro translocation. Both mutants bind proOmpA but fail to support the SecA-dependent membrane binding of proOmpA because of a marked reduction in their binding affinities for SecA. The stimulatory effect of preproteins on the interaction between SecB and SecA exclusively involves the signal sequence domain of the preprotein, as it can be mimicked by a synthetic signal peptide and is not observed with a mutant preprotein (Δ8proOmpA) bearing a non-functional signal sequence. Δ8proOmpA is not translocated across wild-type membranes, but the translocation defect is suppressed in inner membrane vesicles derived from a prlA4 strain. SecB reduces the translocation of Δ8proOmpA into these vesicles and almost completely prevents translocation when, in addition, the SecB binding site on SecA is removed. These data demonstrate that efficient targeting of preproteins by SecB requires both a functional signal sequence and a SecB binding domain on SecA. It is concluded that the SecB–SecA interaction is needed to dissociate the mature preprotein domain from SecB and that binding of the signal sequence domain to SecA is required to ensure efficient transfer of the preprotein to the translocase.  相似文献   

5.
Methods for reproducibly preparing highly translocation-competent proOmpA were developed. Only a competent form of proOmpA was sorted out from incompetent one using SecB, a translocation-dedicated chaperone, as a probe. Trypsin digestion revealed that the incompetent form of proOmpA was partially folded at its N-terminus, consistent with the jamming of proOmpA within translocon. Although the incompetent form of proOmpA was not active as to topology inversion of SecG, the isolated proOmpA/SecB complex had recovered the ability of SecG inversion. These results let us prepare a proOmpA/SecB complex both in vivo and in vitro that is highly translocation-competent. E. coli cells harboring a plasmid, in which ompA and secB were encoded as a synthetic operon, accumulated the proOmpA/SecB complex in the cytosol. The complex, purified by means of a His tag attached to SecB, was found to be translocation-competent as revealed by the occurrence of SecG inversion, although the signal peptide of proOmpA was sensitive to proteolytic digestion. ProOmpA, in vitro synthesized by means of a continuous exchange cell free system in the presence of SecB-His, was purified as a complex with SecB, which was active as to SecG inversion as well.  相似文献   

6.
Protein translocation in Escherichia coli is mediated by the translocase that, in its minimal form, comprises a protein-conducting pore (SecYEG) and a motor protein (SecA). The SecYEG complex forms a narrow channel in the membrane that allows passage of secretory proteins (preproteins) in an unfolded state only. It has been suggested that the SecA requirement for translocation depends on the folding stability of the mature preprotein domain. Here we studied the effects of the signal sequence and SecB on the folding and translocation of folding stabilizing and destabilizing mutants of the mature maltose binding protein (MBP). Although the mutations affect the folding of the precursor form of MBP, these are drastically overruled by the combined unfolding stabilization of the signal sequence and SecB. Consequently, the translocation kinetics, the energetics and the SecA and SecB dependence of the folding mutants are indistinguishable from those of wild-type preMBP. These data indicate that unfolding of the mature domain of preMBP is likely not a rate-determining step in translocation when the protein is targeted to the translocase via SecB.  相似文献   

7.
We have previously reconstituted the soluble phase of precursor protein translocation in vitro using purified proteins (the precursor proOmpA, the chaperone SecB, and the ATPase SecA) in addition to isolated inner membrane vesicles. We now report the isolation of the SecY/E protein, the integral membrane protein component of the E. coli preprotein translocase. The SecY/E protein, reconstituted into proteoliposomes, acts together with SecA protein to support translocation of proOmpA, the precursor form of outer membrane protein A. This translocation requires ATP and is strongly stimulated by the protonmotive force. The initial rates and the extents of translocation into either native membrane vesicles or proteoliposomes with pure SecY/E are comparable. The SecY/E protein consists of SecY, SecE, and an additional polypeptide. Antiserum against SecY immunoprecipitates all three components of the SecY/E protein.  相似文献   

8.
The inner membrane protein YidC is associated with the preprotein translocase of Escherichia coli and contacts transmembrane segments of nascent inner membrane proteins during membrane insertion. YidC was purified to homogeneity and co-reconstituted with the SecYEG complex. YidC had no effect on the SecA/SecYEG-mediated translocation of the secretory protein proOmpA; however, using a crosslinking approach, the transmembrane segment of nascent FtsQ was found to gain access to YidC via SecY. These data indicate the functional reconstitution of the initial stages of YidC-dependent membrane protein insertion via the SecYEG complex.  相似文献   

9.
The export of proOmpA, the precursor of outer membrane protein A from Escherichia coli, requires preprotein translocase, which is comprised of SecA, SecY/E, and acidic phospholipids. Previous studies of proOmpA translocation intermediates (Schiebel, E., Driessen, A. J. M., Hartl, F.-U., and Wickner, W. (1991) Cell 64, 927-939) suggested that the "slippage" of the translocating polypeptide chain and the high level of ATP hydrolysis, characteristic of the "translocation ATPase," were part of a futile cycle. To examine the role of the mature domain of proOmpA in its translocation-dependent ATP hydrolysis, we used chemical cleavage to generate NH2-terminal fragments of this preprotein. Each fragment contained the 21-residue leader region and either 53 or 228 residues of the mature domain (preproteins P74 and P249, respectively). As observed with full-length proOmpA, the translocation of each fragment requires ATP and both the SecA and SecY/E domains of translocase and is stimulated by the transmembrane proton electrochemical gradient. The apparent maximal velocities of P74 and proOmpA translocation are similar. While the translocation of P74 and of proOmpA show the same apparent Km for ATP, far less ATP is hydrolyzed during the translocation of P74. Thus, the mature carboxyl-terminal domain of proOmpA has a major role in supporting the translocation ATPase.  相似文献   

10.
Sec translocase catalyzes membrane protein insertion and translocation. We have introduced stretches of charged amino acid residues into the preprotein proOmpA and have analyzed their effect on in vitro protein translocation into Escherichia coli inner membrane vesicles. Both negatively and positively charged amino acid residues inhibit translocation of proOmpA, yielding a partially translocated polypeptide chain that blocks the translocation site and no longer activates preprotein-stimulated SecA ATPase activity. Stretches of positively charged residues are much stronger translocation inhibitors and suppressors of the preprotein-stimulated SecA ATPase activity than negatively charged residues. These results indicate that both clusters of positively and negatively charged amino acids are poor substrates for the Sec translocase and that this is reflected by their inability to stimulate the ATPase activity of SecA.  相似文献   

11.
Escherichia coli protein export involves cytosolic components termed molecular chaperones which function to stabilize precursors for membrane translocation. It has been suggested that chaperones maintain precursor proteins in a loosely folded state. We now demonstrate that purified proOmpA in its translocation component conformation contains both secondary and tertiary structure as analyzed by circular dichroism and intrinsic tryptophan fluorescence. Association with one molecular chaperone, SecB, subtly modulates the conformation of proOmpA and stabilizes it by inhibiting aggregation, permitting its translocation across inverted E.coli inner membrane vesicles. These results suggest that translocation competence does not simply result from the maintenance of an unfolded state and that molecular chaperones can stabilize precursor proteins by inhibiting their oligomerization.  相似文献   

12.
SecB is a molecular chaperone unique to the phylum Proteobacteria, which includes the majority of known Gram-negative bacteria of medical, industrial and agricultural significance. SecB is involved in the translocation of secretory proteins across the cytoplasmic membrane. The crystal structure of the Haemophilus influenzae SecB provides new insights into how SecB simultaneously recognizes its two ligands: unfolded preproteins and SecA, the ATPase subunit of the translocase. SecB uses its entire molecular surface for these two functions, but for preprotein release and its own membrane release, SecB relies on the catalytic activity of SecA. This defines SecB as a translocation-specific molecular chaperone.  相似文献   

13.
In Escherichia coli, precursor proteins are translocated across the cytoplasmic membrane by translocase. This multisubunit enzyme consists of a preprotein-binding and ATPase domain, SecA, and the SecYEG complex as the integral membrane domain. PrlA4 is a mutant of SecY that enables the translocation of preproteins with a defective, or missing, signal sequence. Inner membranes of the prlA4 strain efficiently translocate Delta8proOmpA, a proOmpA derivative with a non-functional signal sequence. Owing to the signal sequence mutation, Delta8proOmpA binds to the translocase with a lowered affinity and the recognition is not restored by the prlA4 SecY. At the ATP-dependent initiation of translocation, the binding affinity of SecA for SecYEG is lowered causing the premature loss of bound preproteins from the translocase. The prlA4 membranes, however, bind SecA with a much higher affinity than the wild-type, and during initiation, the SecA and preprotein remain bound at the translocation site allowing an improved efficiency of translocation. It is concluded that the prlA4 strain prevents the rejection of defective preproteins from the export pathway by stabilizing SecA at the SecYEG complex.  相似文献   

14.
Various environmental insults result in irreversible damage to proteins and protein complexes. To cope, cells have evolved dedicated protein quality control mechanisms involving molecular chaperones and proteases. Here, we provide both genetic and biochemical evidence that the Lon protease and the SecB and DnaJ/Hsp40 chaperones are involved in the quality control of presecretory proteins in Escherichia coli. We showed that mutations in the lon gene alleviate the cold-sensitive phenotype of a secB mutant. Such suppression was not observed with either clpP or clpQ protease mutants. In comparison to the respective single mutants, the double secB lon mutant strongly accumulates aggregates of SecB substrates at physiological temperatures, suggesting that the chaperone and the protease share substrates. These observations were extended in vitro by showing that the main substrates identified in secB lon aggregates, namely proOmpF and proOmpC, are highly sensitive to specific degradation by Lon. In contrast, both substrates are significantly protected from Lon degradation by SecB. Interestingly, the chaperone DnaJ by itself protects substrates better from Lon degradation than SecB or the complete DnaK/DnaJ/GrpE chaperone machinery. In agreement with this finding, a DnaJ mutant protein that does not functionally interact in vivo with DnaK efficiently suppresses the SecB cold-sensitive phenotype, highlighting the role of DnaJ in assisting presecretory proteins. Taken together, our data suggest that when the Sec secretion pathway is compromised, a pool of presecretory proteins is transiently maintained in a translocation-competent state and, thus, protected from Lon degradation by either the SecB or DnaJ chaperones.  相似文献   

15.
Co-chaperonin protein 10 (cpn10, GroES in Escherichia coli) is a ring-shaped heptameric protein that facilitates substrate folding when in complex with cpn60 (GroEL in E. coli). The cpn10 from the hyperthermophilic, ancient bacterium Aquifex aeolicus (Aacpn10) has a 25-residue C-terminal extension in each monomer not found in any other cpn10 protein. Earlier in vitro work has shown that this tail is not needed for heptamer assembly or protein function. Without the tail, however, the heptamers (Aacpn10del-25) readily aggregate into fibrillar stacked rings. To explain this phenomenon, we performed binding experiments with a peptide construct of the tail to establish its specificity for Aacpn10del-25 and used cryo-electron microscopy to determine the three-dimensional (3D) structure of the GroEL-Aacpn10-ADP complex at an 8-Å resolution. We found that the GroEL-Aacpn10 structure is similar to the GroEL-GroES structure at this resolution, suggesting that Aacpn10 has molecular interactions with cpn60 similar to other cpn10s. The cryo-electron microscopy density map does not directly reveal the density of the Aacpn10 25-residue tail. However, the 3D statistical variance coefficient map computed from multiple 3D reconstructions with randomly selected particle images suggests that the tail is located at the Aacpn10 monomer-monomer interface and extends toward the cis-ring apical domain of GroEL. The tail at this location does not block the formation of a functional co-chaperonin/chaperonin complex but limits self-aggregation into linear fibrils at high temperatures. In addition, the 3D variance coefficient map identifies several regions inside the GroEL-Aacpn10 complex that have flexible conformations. This observation is in full agreement with the structural properties of an effective chaperonin.  相似文献   

16.
The molecular chaperone SecB is part of the protein translocation pathway in Escherichia coli. SecB was purified from an overproducing strain and crystallized, resulting in crystals diffracting to 2.3-Å resolution. The analysis of electrospray ionization mass spectra of dissolved crystals of SecB indicated that we have crystallized an acetylated form of SecB. Sequence analysis suggests that the protein is fully acetylated at its N-terminus in vivo, indicating that potential deacetylation is artificially introduced by purification methods. The high degree of acetylation that we observed might account for the fact that the crystals obtained as described in this study diffract to higher resolution than those in previously reported trials.  相似文献   

17.
The nuclear pore complex (NPC) is a giant protein assembly that penetrates the double layers of the nuclear membrane. The overall structure of the NPC has approximately eightfold symmetry and is formed by approximately 30 nucleoporins. The great size and complexity of the NPC have hindered the study of its structure for many years until recent breakthroughs were achieved by integrating the latest high-resolution cryo-electron microscopy (cryo-EM), the emerging artificial intelligence-based modeling and all other available structural information from crystallography and mass spectrometry. Here, we review our latest knowledge of the NPC architecture and the history of its structural study from in vitro to in situ with progressively improved resolutions by cryo-EM, with a particular focus on the latest subnanometer-resolution structural studies. The future directions for structural studies of NPCs are also discussed.  相似文献   

18.
Translocase mediates the transport of preproteins across the inner membrane of Escherichia coli. SecA binds with high affinity to the membrane-embedded protein-conducting SecYEG complex and serves as both a receptor for secretory proteins and as an ATP-driven molecular motor. Cycles of ATP binding and hydrolysis by SecA drive the progressive movement of the preprotein across the membrane. Surface plasmon resonance allows an online monitoring of protein interactions. Here we report on the kinetic analysis of the interaction between SecA and the membrane-embedded SecYEG complex. Immobilization of membrane vesicles containing overproduced SecYEG on the Biacore Pioneer L1 chip allows the detection of high affinity SecA binding to the SecYEG complex and online monitoring of the translocation of the secretory protein proOmpA. SecA binds tightly to the SecYEG.proOmpA complex and is released only upon ATP hydrolysis. The results provide direct evidence for a model in which SecA cycles at the SecYEG complex during translocation.  相似文献   

19.
Diverse studies of three cytoplasmic proteins of Escherichia coli--SecB, trigger factor and GroEL--have suggested that they can maintain precursor proteins in a conformation which is competent for membrane translocation. These proteins have been termed 'chaperones'. Using purified chaperone proteins and precursor protein substrates, we find that each of these chaperones can stabilize proOmpA for translocation and for the translocation-ATPase. These chaperones bind to proOmpA to form isolable complexes. SecB and GroEL will also form complexes with another exported protein, prePhoE. In contrast, these chaperones do not form stable complexes with a variety of soluble proteins such as SecA protein, bovine serum albumin, ovalbumin or ribonuclease A. While chaperones may transiently interact with soluble proteins to catalyze their folding, the stable interaction between chaperones and presecretory proteins, maintaining an open conformation which is essential for translocation, may commit these proteins to the secretion pathway.  相似文献   

20.
Many double-stranded RNA (dsRNA) viruses are capable of transcribing and capping RNA within a stable icosahedral viral capsid. The turret of turreted dsRNA viruses belonging to the family Reoviridae is formed by five copies of the turret protein, which contains domains with both 7-N-methyltransferase and 2′-O-methyltransferase activities, and serves to catalyze the methylation reactions during RNA capping. Cypovirus of the family Reoviridae provides a good model system for studying the methylation reactions in dsRNA viruses. Here, we present the structure of a transcribing cypovirus to a resolution of ~ 3.8 Å by cryo-electron microscopy. The binding sites for both S-adenosyl-l-methionine and RNA in the two methyltransferases of the turret were identified. Structural analysis of the turret in complex with RNA revealed a pathway through which the RNA molecule reaches the active sites of the two methyltransferases before it is released into the cytoplasm. The pathway shows that RNA capping reactions occur in the active sites of different turret protein monomers, suggesting that RNA capping requires concerted efforts by at least three turret protein monomers. Thus, the turret structure provides novel insights into the precise mechanisms of RNA methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号