首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophages play pivotal roles in development, homeostasis, tissue repair and immunity. Macrophage proliferation is promoted by macrophage colony-stimulating factor (M-CSF)-induced Akt signaling; yet, how this process is terminated remains unclear. Here, we identify casein kinase 2-interacting protein-1 (CKIP-1) as a novel inhibitor of macrophage proliferation. In resting macrophages, CKIP-1 was phosphorylated at Serine 342 by constitutively active GSK3β, the downstream target of Akt. This phosphorylation triggers the polyubiquitination and proteasomal degradation of CKIP-1. Upon M-CSF stimulation, Akt is activated by CSF-1R-PI3K and then inactivates GSK3β, leading to the stabilization of CKIP-1 and β-catenin proteins. β-catenin promotes the expression of proliferation genes including cyclin D and c-Myc. CKIP-1 interacts with TRAF6, a ubiquitin ligase required for K63-linked ubiquitination and plasma membrane recruitment of Akt, and terminates TRAF6-mediated Akt activation. By this means, CKIP-1 inhibits macrophage proliferation specifically at the late stage after M-CSF stimulation. Furthermore, CKIP-1 deficiency results in increased proliferation and decreased apoptosis of macrophages in vitro and CKIP-1−/− mice spontaneously develop a macrophage-dominated splenomegaly and myeloproliferation. Together, these data demonstrate that CKIP-1 plays a critical role in the regulation of macrophage homeostasis by inhibiting TRAF6-mediated Akt activation.  相似文献   

2.
Up to eight different types of secretion systems, and several more subtypes, have been described in Gram-negative bacteria. Here, we focus on the diversity and assembly mechanism of one of the best-studied secretion systems, the widespread chaperone–usher pathway known to assemble and secrete adhesive surface structures, called pili or fimbriae, which play essential roles in targeting bacterial pathogens to the host.  相似文献   

3.
A conference exploring ‘The impact of the environment on innate immunity: the threat of diseases’ was held on 4–9 May 2009 in Obergurgl, Austria, thanks to the support from the European Science Foundation, Innsbruck University and the Austrian Science Foundation. The goals of the conference were to explore how the outcomes of host–parasite interactions depend on variation across individuals, their parasites and the environment in which they both find themselves. Central themes were the inherent costs of mounting an immune response, the ability of some organisms to pre-empt infection by ‘priming’ their immune systems, the fact that parasites learn to evade immune responses over time and the use of theory to predict when diseases will get out of hand. Many of the systems presented had clear impacts on human health, agriculture or the maintenance of complex ecosystems. There was common ground throughout in developing methodologies and embracing what one of the organizers termed the ‘interactome’ between hosts and those which would exploit them.  相似文献   

4.
    
Microbiota can protect their hosts from infection. The short timescales in which microbes can evolve presents the possibility that “protective microbes” can take-over from the immune system of longer-lived hosts in the coevolutionary race against pathogens. Here, we found that coevolution between a protective bacterium (Enterococcus faecalis) and a virulent pathogen (Staphylococcus aureus) within an animal population (Caenorhabditis elegans) resulted in more disease suppression than when the protective bacterium adapted to uninfected hosts. At the same time, more protective E. faecalis populations became costlier to harbor and altered the expression of 134 host genes. Many of these genes appear to be related to the mechanism of protection, reactive oxygen species production. Crucially, more protective E. faecalis populations downregulated a key immune gene, , known to be effective against S. aureus infection. These results suggest that a microbial line of defense is favored by microbial coevolution and may cause hosts to plastically divest of their own immunity.  相似文献   

5.
To prevent epidemics, insect societies have evolved collective disease defences that are highly effective at curing exposed individuals and limiting disease transmission to healthy group members. Grooming is an important sanitary behaviour—either performed towards oneself (self-grooming) or towards others (allogrooming)—to remove infectious agents from the body surface of exposed individuals, but at the risk of disease contraction by the groomer. We use garden ants (Lasius neglectus) and the fungal pathogen Metarhizium as a model system to study how pathogen presence affects self-grooming and allogrooming between exposed and healthy individuals. We develop an epidemiological SIS model to explore how experimentally observed grooming patterns affect disease spread within the colony, thereby providing a direct link between the expression and direction of sanitary behaviours, and their effects on colony-level epidemiology. We find that fungus-exposed ants increase self-grooming, while simultaneously decreasing allogrooming. This behavioural modulation seems universally adaptive and is predicted to contain disease spread in a great variety of host–pathogen systems. In contrast, allogrooming directed towards pathogen-exposed individuals might both increase and decrease disease risk. Our model reveals that the effect of allogrooming depends on the balance between pathogen infectiousness and efficiency of social host defences, which are likely to vary across host–pathogen systems.  相似文献   

6.
Therapies with increasing specificity against pathogens follow the immune system''s evolutionary course in maximizing host defence while minimizing self-harm. Nevertheless, even completely non-specific stressors, such as reactive molecular species, heat, nutrient and oxygen deprivation, and acidity can be used to preferentially harm pathogens. Strategic use of non-specific stressors requires exploiting differences in stress vulnerability between pathogens and hosts. Two basic vulnerabilities of pathogens are: (i) the inherent vulnerability to stress of growth and replication (more immediately crucial for pathogens than for host cells) and (ii) the degree of pathogen localization, permitting the host''s use of locally and regionally intense stress. Each of the various types of non-specific stressors is present during severe infections at all levels of localization: (i) ultra-locally within phagolysosomes, (ii) locally at the infected site, (iii) regionally around the infected site and (iv) systemically as part of the acute-phase response. We propose that hosts strategically use a coordinated system of non-specific stressors at local, regional and systemic levels to preferentially harm the pathogens within. With the rising concern over emergence of resistance to specific therapies, we suggest more scrutiny of strategies using less specific therapies in pathogen control. Hosts'' active use of multiple non-specific stressors is likely an evolutionarily basic defence whose retention underlies and supplements the well-recognized immune defences that directly target pathogens.  相似文献   

7.
Provisioning of abundant food resources in human-altered landscapes can have profound effects on wildlife ecology, with important implications for pathogen transmission. While empirical studies have quantified the effects of provisioning on host behaviour and immunology, the net interactive effect of these components on host–pathogen dynamics is unknown. We use simple compartmental models to investigate how provisioning-induced changes to host demography, contact behaviour and immune defence influence pathogen invasion and persistence. We show that pathogen invasion success and equilibrium prevalence depend critically on how provisioning affects host immune defence and that moderate levels of provisioning can lead to drastically different outcomes of pathogen extinction or maximizing prevalence. These results highlight the need for further empirical studies to fully understand how provisioning affects pathogen transmission in urbanized environments.  相似文献   

8.
9.
    
Data on long-term circulation of pathogens in wildlife populations are seldom collected, and hence understanding of spatial–temporal variation in prevalence and genotypes is limited. Here, we analysed a long-term surveillance series on influenza A virus (IAV) in mallards collected at an important migratory stopover site from 2002 to 2010, and characterized seasonal dynamics in virus prevalence and subtype diversity. Prevalence dynamics were influenced by year, but retained a common pattern for all years whereby prevalence was low in spring and summer, but increased in early autumn with a first peak in August, and a second more pronounced peak during October–November. A total of 74 haemagglutinin (HA)/neuraminidase (NA) combinations were isolated, including all NA and most HA (H1–H12) subtypes. The most common subtype combinations were H4N6, H1N1, H2N3, H5N2, H6N2 and H11N9, and showed a clear linkage between specific HA and NA subtypes. Furthermore, there was a temporal structuring of subtypes within seasons based on HA phylogenetic relatedness. Dissimilar HA subtypes tended to have different temporal occurrence within seasons, where the subtypes that dominated in early autumn were rare in late autumn, and vice versa. This suggests that build-up of herd immunity affected IAV dynamics in this system.  相似文献   

10.
    
To maximize fitness upon pathogenic infection, host organisms might reallocate energy and resources among life‐history traits, such as reproduction and defense. The fitness costs of infection can result from both immune upregulation and direct pathogen exploitation. The extent to which these costs, separately and together, vary by host genotype and across generations is unknown. We attempted to disentangle these costs by transiently exposing wild isolates and a lab‐domesticated strain of Caenorhabditis elegans nematodes to the pathogen Staphylococcus aureus, using exposure to heat‐killed pathogens to distinguish costs due to immune upregulation and pathogen exploitation. We found that host nematodes exhibit a short‐term delay in offspring production when exposed to live and heat‐killed pathogen, but their lifetime fecundity (total offspring produced) recovered to control levels. We also found genetic variation between host isolates for both cumulative offspring production and magnitude of fitness costs. We further investigated whether there were maternal pathogen exposure costs (or benefits) to offspring and revealed a positive correlation between the magnitude of the pathogen‐induced delay in the parent''s first day of reproduction and the cost to offspring population growth. Our findings highlight the capacity for hosts to recover fecundity after transient exposure to a pathogen.  相似文献   

11.
ABSTRACT

Macrophage foam cell formation and inflammation are a pathological hallmark of atherosclerosis. ClC-2 has been implicated in various pathological processes, including inflammation and lipid metabolic disorder. However, the functional role of ClC-2 in macrophage foam cell formation and inflammation is unclear. Here, we found that ClC-2 was dominantly expressed in macrophages of atherosclerotic plaque and increased in atherogenesis. Knockdown of ClC-2 inhibited ox-LDL -induced lipid uptake and deposition in macrophages. The increase in CD36 expression and the decrease in ABCA1 expression induced by ox-LDL were alleviated by ClC-2 downregulation. Further, ClC-2 lacking limited the ox-LDL-induced secretion of inflammatory cytokines and chemokine, and suppressed Nlrp3 inflammasome activation. Restoration of Nlrp3 expression reversed the effect of ClC-2 downregulation on macrophage lipid accumulation and inflammation. Collectively, our study demonstrates that ClC-2 knockdown ameliorates ox-LDL-induced macrophage foam cell formation and inflammation by inhibiting Nlrp3 inflammasome activation.  相似文献   

12.
PPARs调控巨噬细胞的活化与功能   总被引:1,自引:0,他引:1  
巨噬细胞是先天性防御病原体的关键组分,它参与炎症的发生和消退,同时也参与了组织的修复。巨噬细胞的多种功能通过不同的活化状态完成,即从经典活化状态到替代性活化状态,再到失活状态。巨噬细胞活化的失调与代谢、炎症和免疫病变有关,调节蛋白控制巨噬细胞的活化可作为新的治疗靶点。主要综述过氧化物酶体增殖物激活受体(PPARs)调控巨噬细胞活化的作用。  相似文献   

13.
Multiple recent investigations have highlighted the promise of helminth-based therapies for the treatment of inflammatory disorders of the intestinal tract of humans, including inflammatory bowel disease and coeliac disease. However, the mechanisms by which helminths regulate immune responses, leading to the amelioration of symptoms of chronic inflammation are unknown. Given the pivotal roles of the intestinal microbiota in the pathogenesis of these disorders, it has been hypothesized that helminth-induced modifications of the gut commensal flora may be responsible for the therapeutic properties of gastrointestinal parasites. In this article, we review recent progress in the elucidation of host–parasite–microbiota interactions in both animal models of chronic inflammation and humans, and provide a working hypothesis of the role of the gut microbiota in helminth-induced suppression of inflammation.  相似文献   

14.
While avian chronic haemoparasite infections induce reproductive costs, infection has not previously been shown to affect survival. Here, we experimentally reduced, through medication, the intensity of infection by Haemoproteus parasites in wild-breeding female blue tits Cyanistes caeruleus. However, this treatment did not reduce the intensity of infection in males or the intensity of infection by Leucocytozoon. Medicated females, but not males, showed increased local survival until the next breeding season compared with control birds. To our knowledge, this is the first empirical evidence showing long-term direct survival costs of chronic Haemoproteus infections in wild birds.  相似文献   

15.
    
Anthropogenic landscape modification such as urbanization can expose wildlife to toxicants, with profound behavioural and health effects. Toxicant exposure can alter the local transmission of wildlife diseases by reducing survival or altering immune defence. However, predicting the impacts of pathogens on wildlife across their ranges is complicated by heterogeneity in toxicant exposure across the landscape, especially if toxicants alter wildlife movement from toxicant-contaminated to uncontaminated habitats. We developed a mechanistic model to explore how toxicant effects on host health and movement propensity influence range-wide pathogen transmission, and zoonotic exposure risk, as an increasing fraction of the landscape is toxicant-contaminated. When toxicant-contaminated habitat is scarce on the landscape, costs to movement and survival from toxicant exposure can trap infected animals in contaminated habitat and reduce landscape-level transmission. Increasing the proportion of contaminated habitat causes host population declines from combined effects of toxicants and infection. The onset of host declines precedes an increase in the density of infected hosts in contaminated habitat and thus may serve as an early warning of increasing potential for zoonotic spillover in urbanizing landscapes. These results highlight how sublethal effects of toxicants can determine pathogen impacts on wildlife populations that may not manifest until landscape contamination is widespread.  相似文献   

16.
    
Poultry are the main source of human infection by Salmonella. As infected poultry are asymptomatic, identifying infected poultry farms is difficult, thus controlling animal infections is of primary importance. As cell tropism is known to govern disease, our aim was therefore to identify infected host–cell types in the organs of chicks known to be involved in Salmonella infection and investigate the role of the three known invasion factors in this process (T3SS-1, Rck and PagN). Chicks were inoculated with wild-type or isogenic fluorescent Salmonella Typhimurium mutants via the intracoelomic route. Our results show that liver, spleen, gall bladder and aortic vessels could be foci of infection, and that phagocytic and non-phagocytic cells, including immune, epithelial and endothelial cells, are invaded in vivo in each organ. Moreover, a mutant defective for the T3SS-1, Rck and PagN remained able to colonize organs like the wild-type strain and invaded non-phagocytic cells in each organ studied. As the infection of the gall bladder had not previously been described in chicks, invasion of gall bladder cells was confirmed by immunohistochemistry and infection was shown to last several weeks after inoculation. Altogether, for the first time these findings provide insights into cell tropism of Salmonella in relevant organs involved in Salmonella infection in chicks and also demonstrate that the known invasion factors are not required for entry into these cell types.  相似文献   

17.
The discovery of the key role of Toll-like receptors (TLRs) in initiating innate immune responses and modulating adaptive immunity has revolutionized our understanding of vertebrate defence against pathogens. Yet, despite their central role in pathogen recognition and defence initiation, there is little information on how variation in TLRs influences disease susceptibility in natural populations. Here, we assessed the extent of naturally occurring polymorphisms at TLR2 in wild bank voles (Myodes glareolus) and tested for associations between TLR2 variants and infection with Borrelia afzelii, a common tick-transmitted pathogen in rodents and one of the causative agents of human Lyme disease. Bank voles in our population had 15 different TLR2 haplotypes (10 different haplotypes at the amino acid level), which grouped in three well-separated clusters. In a large-scale capture–mark–recapture study, we show that voles carrying TLR2 haplotypes of one particular cluster (TLR2c2) were almost three times less likely to be Borrelia infected than animals carrying other haplotypes. Moreover, neutrality tests suggested that TLR2 has been under positive selection. This is, to our knowledge, the first demonstration of an association between TLR polymorphism and parasitism in wildlife, and a striking example that genetic variation at innate immune receptors can have a large impact on host resistance.  相似文献   

18.
    
Conspecific negative distance- and density-dependence is often assumed to be one of the most important mechanisms controlling forest community assembly and species diversity globally. Plant pathogens, and insect and mammalian herbivores, are the most common natural enemy types that have been implicated in this phenomenon, but their general effects at different plant life stages are still unclear. Here, we conduct a meta-analysis of studies that involved robust manipulative experiments, using fungicides, insecticides and exclosures, to assess the contributions of different natural enemy types to distance- and density-dependent effects at seed and seedling stages. We found that distance- and density-dependent mortality caused by natural enemies was most likely at the seedling stage and was greater at higher mean annual temperatures. Conspecific negative distance- and density-dependence at the seedling stage is significantly weakened when fungicides were applied. By contrast, negative conspecific distance- and density-dependence is not a general pattern at the seed stage. High seed mass reduced distance- and density-dependent mortality at the seed stage. Seed studies excluding only large mammals found significant negative conspecific distance-dependent mortality, but exclusion of all mammals resulted in a non-significant effect of conspecifics. Our study suggests that plant pathogens are a major cause of distance- and density-dependent mortality at the seedling stage, while the impacts of herbivores on seedlings have been understudied. At the seed stage, large and small mammals, respectively, weaken and enhance negative conspecific distance-dependent mortality. Future research should identify specific agents of mortality, investigate the interactions among different enemy types and assess how global change may affect natural enemies and thus influence the strength of conspecific distance- and density-dependence.  相似文献   

19.
The A3‐adenosine receptor (A3AR) has recently emerged as a key regulator of neutrophil behaviour. Using a fluorescent A3AR ligand, we show that A3ARs aggregate in highly polarized immunomodulatory microdomains on human neutrophil membranes. In addition to regulating chemotaxis, A3ARs promote the formation of filipodia‐like projections (cytonemes) that can extend up to 100 μm to tether and ‘reel in’ pathogens. Exposure to bacteria or an A3AR agonist stimulates the formation of these projections and bacterial phagocytosis, whereas an A3AR‐selective antagonist inhibits cytoneme formation. Our results shed new light on the behaviour of neutrophils and identify the A3AR as a potential target for modulating their function.  相似文献   

20.
Recent evidence that excessive lipid accumulation can decrease cellular levels of autophagy and that autophagy regulates immune responsiveness suggested that impaired macrophage autophagy may promote the increased innate immune activation that underlies obesity. Primary bone marrow-derived macrophages (BMDM) and peritoneal macrophages from high-fat diet (HFD)-fed mice had decreased levels of autophagic flux indicating a generalized impairment of macrophage autophagy in obese mice. To assess the effects of decreased macrophage autophagy on inflammation, mice with a Lyz2-Cre-mediated knockout of Atg5 in macrophages were fed a HFD and treated with low-dose lipopolysaccharide (LPS). Knockout mice developed systemic and hepatic inflammation with HFD feeding and LPS. This effect was liver specific as knockout mice did not have increased adipose tissue inflammation. The mechanism by which the loss of autophagy promoted inflammation was through the regulation of macrophage polarization. BMDM and Kupffer cells from knockout mice exhibited abnormalities in polarization with both increased proinflammatory M1 and decreased anti-inflammatory M2 polarization as determined by measures of genes and proteins. The heightened hepatic inflammatory response in HFD-fed, LPS-treated knockout mice led to liver injury without affecting steatosis. These findings demonstrate that autophagy has a critical regulatory function in macrophage polarization that downregulates inflammation. Defects in macrophage autophagy may underlie inflammatory disease states such as the decrease in macrophage autophagy with obesity that leads to hepatic inflammation and the progression to liver injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号