首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular targeted therapies have been the focus of recent clinical trials for the treatment of patients with recurrent epithelial ovarian cancer (EOC). The majority have not fared well as monotherapies for improving survival of these patients. Poor bioavailability, lack of predictive biomarkers, and the presence of multiple survival pathways can all diminish the success of a targeted agent. Dasatinib is a tyrosine kinase inhibitor of the Src-family kinases (SFK) and in preclinical studies shown to have substantial activity in EOC. However, when evaluated in a phase 2 clinical trial for patients with recurrent or persistent EOC, it was found to have minimal activity. We hypothesized that synthetic lethality screens performed using a cogently designed siRNA library would identify second-site molecular targets that could synergize with SFK inhibition and improve dasatinib efficacy. Using a systematic approach, we performed primary siRNA screening using a library focused on 638 genes corresponding to a network centered on EGFR, HER2, and the SFK-scaffolding proteins BCAR1, NEDD9, and EFS to screen EOC cells in combination with dasatinib. We followed up with validation studies including deconvolution screening, quantitative PCR to confirm effective gene silencing, correlation of gene expression with dasatinib sensitivity, and assessment of the clinical relevance of hits using TCGA ovarian cancer data. A refined list of five candidates (CSNK2A1, DAG1, GRB2, PRKCE, and VAV1) was identified as showing the greatest potential for improving sensitivity to dasatinib in EOC. Of these, CSNK2A1, which codes for the catalytic alpha subunit of protein kinase CK2, was selected for additional evaluation. Synergistic activity of the clinically relevant inhibitor of CK2, CX-4945, with dasatinib in reducing cell proliferation and increasing apoptosis was observed across multiple EOC cell lines. This overall approach to improving drug efficacy can be applied to other targeted agents that have similarly shown poor clinical activity.  相似文献   

2.
NUF2 (NUF2, Ndc80 kinetochore complex component) plays an important role in kinetochore-microtubule attachment. It has been reported that NUF2 is associated with multiple human cancers. However, the functional role of NUF2 in pancreatic cancer remains unclear. In this study, we found that NUF2 expression was stronger in tumour tissues than in normal pancreatic tissues, and its overexpression could be related to poor prognosis. Moreover, NUF2 was highly expressed in several human pancreatic cancer cell lines. We took advantage of lentivirus-mediated siRNA (small interfering RNA) to suppress NUF2 expression in PANC-1 and Sw1990 cell lines aiming to investigate the role of NUF2 in pancreatic cancer. NUF2 silencing by RANi (RNA interference) reduced the proliferation and colony formation ability of pancreatic cancer cells in vitro. Cell cycle analysis showed that NUF2 knockdown induced cell cycle arrest at G0/G1 phase via suppression of Cyclin B1, Cdc2 and Cdc25A. More importantly, NUF2 silencing was able to alleviate in vivo tumourigenesis in pancreatic cancer xenograft nude mice. Collectively, the present study indicates that the siRNA-mediated knockdown against NUF2 may be a promising therapeutic method for the treatment of pancreatic cancer.  相似文献   

3.
A third of patients with epithelial ovarian cancer (EOC) present ascites. The cellular fraction of ascites often consists of EOC cells, lymphocytes, and mesothelial cells, whereas the acellular fraction contains cytokines and angiogenic factors. Clinically, the presence of ascites correlates with intraperitoneal and retroperitoneal tumor spread. We have used OV-90, a tumorigenic EOC cell line derived from the malignant ascites of a chemonaive ovarian cancer patient, as a model to assess the effect of ascites on migration potential using an in vitro wound-healing assay. A recent report of an invasion assay described the effect of ascites on the invasion potential of the OV-90 cell line. Ascites sampled from 31 ovarian cancer patients were tested and compared with either 5% fetal bovine serum or no serum for their nonstimulatory or stimulatory effect on the migration potential of the OV-90 cell line. A supervised analysis of data generated by the Affymetrix HG-U133A GeneChip identified differentially expressed genes from OV-90 cells exposed to ascites that had either a nonstimulatory or a stimulatory effect on migration. Ten genes (IRS2, CTSD, NRAS, MLXIP, HMGCR, LAMP1, ETS2, NID1, SMARCD1, and CD44) were upregulated in OV-90 cells exposed to ascites, allowing a nonstimulatory effect on cell migration. These findings were validated by quantitative polymerase chain reaction. In addition, the gene expression of IRS2 and MLXIP each correlated with prognosis when their expression was assessed in an independent set of primary cultures established from ovarian ascites. This study revealed novel candidates that may play a role in ovarian cancer cell migration.  相似文献   

4.
5.
ObjectTo explore the role of microRNA-21 in human epithelial ovarian cancer (EOC).MethodsWe used RT-PCR to test the expressions of miRNA-21 in EOC cells and normal ovarian epithelial cells, as well as the tumor samples and the tumor-adjacent normal tissues. The vector of LV3 pGLV-H1-GFP-miR-21 was used to decrease the level expression of endogenous miR-21 in cells. Further, we investigated how miR-21 affected the biological events of EOC through determining the changes in proliferation, cycle and invasion of EOC cells, and measured the tumorigenesis in xenograft models. The association between phosphatase and tensin homolog deleted on chromosome ten (PTEN) and miR-21 were tested by RT-PCR. Next, siRNA was used to knockdown PTEN gene which help us to assess the functional association between miR-21 and PTEN in vivo and in vitro.ResultsIn EOC cell lines and human epithelial ovarian tumor cells, we found that miR-21 altered the biological features of EOC cells, including suppression of proliferation and invasion and arrest of cell cycle, and also resulted in a decrease in tumorigenesis in the in vitro xenograft models. The association between PTEN and miR-21 was confirmed in previous research. From our results, the down-regulation of PTEN gave rise to the miR-21 decrease, regardless of the cells or tissues.ConclusionThe suppression of microRNA-21 inhibits the progression of EOC profoundly. In EOC, miR-21 is negatively correlated with the expression of PTEN gene.  相似文献   

6.
7.
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as a small population of cancer cells that have high tumorigenicity. Furthermore, CSCs/CICs are resistant to several cancer therapies, and CSCs/CICs are therefore thought to be responsible for cancer recurrence after treatment and distant metastasis. In epithelial ovarian cancer (EOC) cases, disease recurrence after chemotherapy is frequently observed, suggesting ovarian CSCs/CICs are involved. There are four major histological subtypes in EOC, and serous adenocarcinoma and clear cell adenocarcinoma are high-grade malignancies. We therefore analyzed ovarian CSCs/CICs from ovarian carcinoma cell lines (serous adenocarcinoma and clear cell adenocarcinoma) and primary ovarian cancer cells in this study. We isolated ovarian CSCs/CICs as an aldehyde dehydrogenase 1 high (ALDH1high) population from 6 EOC cell lines (3 serous adenocarcinomas and 3 clear cell adenocarcinomas) by the ALDEFLUOR assay. ALDH1high cells showed greater sphere-forming ability, higher tumorigenicity and greater invasive capability, indicating that ovarian CSCs/CICs are enriched in ALDH1high cells. ALDH1high cells could also be isolated from 8 of 11 primary ovarian carcinoma samples. Immunohistochemical staining revealed that higher ALDH1 expression levels in ovary cancer cases are related to poorer prognosis in both serous adenocarcinoma cases and clear cell adenocarcinoma cases. Taken together, the results indicate that ALDH1 is a marker for ovarian CSCs/CICs and that the expression level of ALDH1 might be a novel biomarker for prediction of poor prognosis.  相似文献   

8.
9.
Diagnosis and treatment of epithelial ovarian cancer is challenging due to the poor understanding of the pathogenesis of the disease. Our aim was to investigate epigenetic mechanisms in ovarian tumorigenesis and, especially, whether tumors with different histological subtypes or hereditary background (Lynch syndrome) exhibit differential susceptibility to epigenetic inactivation of growth regulatory genes. Gene candidates for epigenetic regulation were identified from the literature and by expression profiling of ovarian and endometrial cancer cell lines treated with demethylating agents. Thirteen genes were chosen for methylation-specific multiplex ligation-dependent probe amplification assays on 104 (85 sporadic and 19 Lynch syndrome-associated) ovarian carcinomas. Increased methylation (i.e., hypermethylation) of variable degree was characteristic of ovarian carcinomas relative to the corresponding normal tissues, and hypermethylation was consistently more prominent in non-serous than serous tumors for individual genes and gene sets investigated. Lynch syndrome-associated clear cell carcinomas showed the highest frequencies of hypermethylation. Among endometrioid ovarian carcinomas, lower levels of promoter methylation of RSK4, SPARC, and HOXA9 were significantly associated with higher tumor grade; thus, the methylation patterns showed a shift to the direction of high-grade serous tumors. In conclusion, we provide evidence of a frequent epigenetic inactivation of RSK4, SPARC, PROM1, HOXA10, HOXA9, WT1-AS, SFRP2, SFRP5, OPCML, and MIR34B in the development of non-serous ovarian carcinomas of Lynch and sporadic origin, as compared to serous tumors. Our findings shed light on the role of epigenetic mechanisms in ovarian tumorigenesis and identify potential targets for translational applications.  相似文献   

10.

Background

Epithelial ovarian cancer (EOC) is morphologically heterogeneous being classified as serous, endometrioid, clear cell, or mucinous. Molecular genetic analysis has suggested a role for tumor suppressor genes located at chromosome 3p in serous EOC pathogenesis. Our objective was to evaluate the expression of HYAL1, located at chromosome 3p21.3, in these EOC subtypes, and to investigate its correlation with the expression of steroid hormone receptors.

Methodology/Principal Findings

We determined the mRNA expression of HYAL1, estrogen receptor (ER)-α, ERβ and progesterone receptor (PR) in EOC tumor samples and cell lines using quantitative RT-PCR. We also examined the expression of these genes in a publicly available microarray dataset. HYAL-1 enzyme activity was measured in EOC cell lines and in plasma samples from patients. We found that HYAL1 mRNA expression was elevated in clear cell and mucinous EOC tissue samples, but not in serous and endometrioid samples, normal ovaries or benign tumors. Similar results were obtained by two different techniques and with tissue sample cohorts from two independent institutions. Concordantly, HYAL1 mRNA levels and enzymatic activity were elevated only in EOC cell lines derived from clear cell and mucinous subtypes. We also showed that HYAL1 mRNA was inversely correlated to that of ERα specifically in clear cell and mucinous EOCs. Additionally, ectopic expression of ERα in a clear cell EOC cell line (ER- and PR-negative) induced 50% reduction of HYAL1 mRNA expression, supporting a role of ERα in HYAL1 gene regulation. Significantly, HYAL-1 activity was also high in the plasma of patients with these EOC subtypes.

Conclusions/Significance

This is the first report showing high HYAL-1 levels in EOC and demonstrating HYAL1 gene repression by ERα. Our results identify Hyaluronidase-1 as a potential target/biomarker for clear cell and mucinous EOCs and especially in tumors with low ERα levels.  相似文献   

11.
Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the polycomb repressive complex 2 (PRC2) that includes noncatalytic subunits suppressor of zeste 12 (SUZ12) and embryonic ectoderm development (EED). When present in PRC2, EZH2 catalyzes trimethylation on lysine 27 residue of histone H3 (H3K27Me3), resulting in epigenetic silencing of gene expression. Here, we investigated the expression and function of EZH2 in epithelial ovarian cancer (EOC). When compared with primary human ovarian surface epithelial (pHOSE) cells, EZH2, SUZ12, and EED were expressed at higher levels in all 8 human EOC cell lines tested. Consistently, H3K27Me3 was also overexpressed in human EOC cell lines compared with pHOSE cells. EZH2 was significantly overexpressed in primary human EOCs (n = 134) when compared with normal ovarian surface epithelium (n = 46; P < 0.001). EZH2 expression positively correlated with expression of Ki67 (P < 0.001; a marker of cell proliferation) and tumor grade (P = 0.034) but not tumor stage (P = 0.908) in EOC. There was no correlation of EZH2 expression with overall (P = 0.3) or disease-free survival (P = 0.2) in high-grade serous histotype EOC patients (n = 98). Knockdown of EZH2 expression reduced the level of H3K27Me3 and suppressed the growth of human EOC cells both in vitro and in vivo in xenograft models. EZH2 knockdown induced apoptosis of human EOC cells. Finally, we showed that EZH2 knockdown suppressed the invasion of human EOC cells. Together, these data demonstrate that EZH2 is frequently overexpressed in human EOC cells and its overexpression promotes the proliferation and invasion of human EOC cells, suggesting that EZH2 is a potential target for developing EOC therapeutics.  相似文献   

12.
Epidermal growth factor receptor (EGFR) overexpression and activation result in increased proliferation and migration of solid tumors including ovarian cancer. In recent years, mounting evidence indicates that EGFR is a direct and functional target of miR-7. In this study, we found that miR-7 expression was significantly downregulated in highly metastatic epithelial ovarian cancer (EOC) cell lines and metastatic tissues, whereas the expression of, EGFR correlated positively with metastasis in both EOC patients and cell lines. Overexpression of miR-7 markedly suppressed the capacities of cell invasion and migration and resulted in morphological changes from a mesenchymal phenotype to an epithelial-like phenotype in EOC. In addition, overexpression of miR-7 upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, accompanied with EGFR inhibition and AKT/ERK1/2 inactivation. Similar to miR-7 transfection, silencing of EGFR with this siRNA in EOC cells also upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, and decreased phosphorylation of both Akt and ERK1/2, confirming that EGFR is a target of miR-7 in reversing EMT. The pharmacological inhibition of PI3K-AKT and ERK1/2 both significantly enhanced CK-18 and β-catenin expression and suppressed vimentin expression, indicating that AKT and ERK1/2 pathways are required for miR-7 mediating EMT. Finally, the expression of miR-7 and EGFR in primary EOC with matched metastasis tissues was explored. It was showed that miR-7 is inversely correlated with EGFR. Taken together, our results suggested that miR-7 inhibited tumor metastasis and reversed EMT through AKT and ERK1/2 pathway inactivation by reducing EGFR expression in EOC cell lines. Thus, miR-7 might be a potential prognostic marker and therapeutic target for ovarian cancer metastasis intervention.  相似文献   

13.
Cells with sphere forming capacity, spheroid cells, are present in the malignant ascites of patients with epithelial ovarian cancer (EOC) and represent a significant impediment to efficacious treatment due to their putative role in progression, metastasis and chemotherapy resistance. The exact mechanisms that underlie EOC metastasis and drug resistance are not clear. Understanding the biology of sphere forming cells may contribute to the identification of novel therapeutic opportunities for metastatic EOC. Here we generated spheroid cells from human ovarian cancer cell lines and primary ovarian cancer. Xenoengraftment of as few as 2000 dissociated spheroid cells into immune-deficient mice allowed full recapitulation of the original tumor, whereas >105 parent tumor cells remained non-tumorigenic. The spheroid cells were found to be enriched for cells with cancer stem cell-like characteristics such as upregulation of stem cell genes, self-renewal, high proliferative and differentiation potential, and high aldehyde dehydrogenase (ALDH) activity. Furthermore, spheroid cells were more aggressive in growth, migration, invasion, scratch recovery, clonogenic survival, anchorage-independent growth, and more resistant to chemotherapy in vitro. 13C-glucose metabolic studies revealed that spheroid cells route glucose predominantly to anaerobic glycolysis and pentose cycle to the detriment of re-routing glucose for anabolic purposes. These metabolic properties of sphere forming cells appear to confer increased resistance to apoptosis and contribute to more aggressive tumor growth. Collectively, we demonstrated that spheroid cells with cancer stem cell-like characteristics contributed to tumor generation, progression and chemotherapy resistance. This study provides insight into the relationship between tumor dissemination and metabolic attributes of human cancer stem cells and has clinical implications for cancer therapy.  相似文献   

14.
15.
16.
Development of chemoresistance is a major impediment to successful treatment of patients suffering from epithelial ovarian carcinoma (EOC). Among various molecular factors, presence of MyD88, a component of TLR-4/MyD88 mediated NF-κB signaling in EOC tumors is reported to cause intrinsic paclitaxel resistance and poor survival. However, 50–60% of EOC patients do not express MyD88 and one-third of these patients finally relapses and dies due to disease burden. The status and role of NF-κB signaling in this chemoresistant MyD88negative population has not been investigated so far. Using isogenic cellular matrices of cisplatin, paclitaxel and platinum-taxol resistant MyD88negative A2780 ovarian cancer cells expressing a NF-κB reporter sensor, we showed that enhanced NF-κB activity was required for cisplatin but not for paclitaxel resistance. Immunofluorescence and gel mobility shift assay demonstrated enhanced nuclear localization of NF-κB and subsequent binding to NF-κB response element in cisplatin resistant cells. The enhanced NF-κB activity was measurable from in vivo tumor xenografts by dual bioluminescence imaging. In contrast, paclitaxel and the platinum-taxol resistant cells showed down regulation in NF-κB activity. Intriguingly, silencing of MyD88 in cisplatin resistant and MyD88positive TOV21G and SKOV3 cells showed enhanced NF-κB activity after cisplatin but not after paclitaxel or platinum-taxol treatments. Our data thus suggest that NF-κB signaling is important for maintenance of cisplatin resistance but not for taxol or platinum-taxol resistance in absence of an active TLR-4/MyD88 receptor mediated cell survival pathway in epithelial ovarian carcinoma.  相似文献   

17.
Epithelial ovarian cancer is a diverse molecular and clinical disease, yet standard treatment is the same for all subtypes. TP53 mutations represent a node of divergence in epithelial ovarian cancer histologic subtypes and may represent a therapeutic opportunity in subtypes expressing wild type, including most low-grade ovarian serous carcinomas, ovarian clear cell carcinomas and ovarian endometrioid carcinomas, which represent approximately 25% of all epithelial ovarian cancer. We therefore sought to investigate Nutlin-3a—a therapeutic which inhibits MDM2, activates wild-type p53, and induces apoptosis—as a therapeutic compound for TP53 wild-type ovarian carcinomas. Fifteen epithelial ovarian cancer cell lines of varying histologic subtypes were treated with Nutlin-3a with determination of IC50 values. Western Blot (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) analyses quantified MDM2, p53, and p21 expression after Nutlin-3a treatment. DNA from 15 cell lines was then sequenced for TP53 mutations in exons 2-11 including intron-exon boundaries. Responses to Nutlin-3a were dependent upon TP53 mutation status. By qRT-PCR and WB, levels of MDM2 and p21 were upregulated in wild-type TP53 sensitive cell lines, and p21 induction was reduced or absent in mutant cell lines. Annexin V assays demonstrated apoptosis in sensitive cell lines treated with Nutlin-3a. Thus, Nutlin-3a could be a potential therapeutic agent for ovarian carcinomas expressing wild-type TP53 and warrants further investigation.  相似文献   

18.
Recurrent metastatic epithelial ovarian cancer (EOC) is challenging and associated with treatment limitations, as the mechanisms governing the metastatic behavior of chemoresistant EOC cells remain elusive. Using orthotopic xenograft mouse models of sensitive and acquired platinum-taxol-resistant A2780 EOC cells, we studied the mechanistic role of insulin like growth factor 1 receptor (IGF1R) signaling in the regulation of organ-specific metastasis of EOC cells undergoing acquirement of chemoresistance. Biochemical assays and organ-specific fibroblast-EOC cell co-culture were used to study the differential metastatic characteristics of sensitive vs. chemoresistant EOC cells, and the key molecule/s underlying the organ-specific homing of chemoresistant EOC cells were identified through subtractive LC/MS profiling of the co-culture secretome. The role of the identified molecule was validated through genetic/pharmacologic perturbation experiments. Acquired chemoresistance augmented organ-specific metastasis of EOC cells and enhanced lung homing, particularly for the late-stage chemoresistant cells, which was abrogated after IGF1R silencing. Escalation of chemoresistance (intrinsic and acquired) conferred EOC cells with higher adhesion toward primary lung fibroblasts, largely governed by the α6 integrin-IGF1R dual signaling axes. Subtractive analysis of the co-culture secretome revealed that interaction with lung fibroblasts induced the secretion of S100A4 from highly resistant EOC cells, which reciprocally activated lung fibroblasts. Genetic and pharmacologic inhibition of S100A4 significantly lowered distant metastases and completely abrogated lung-tropic nature of late-stage chemoresistant EOC cells. These results indicate that chemoresistance exacerbates organ-specific metastasis of EOC cells via the IGF1R-α6 integrin-S100A4 molecular network, of which S100A4 may serve as a potential target for the treatment of recurrent metastatic EOC.  相似文献   

19.
Ovarian cancer is the deadliest of the gynecological diseases and the fifth cause of cancer death among American women. This is mainly due to the lack of prognostic tools capable of detecting early stages of ovarian cancer and to the high rate of resistance to the current chemotherapeutic regimens. In this scenario the overall 5-year survival rate for ovarian cancer patients diagnosed at late stage is less than 25%. Abnormalities associated with the malignant phenotype and the mechanisms of tumor progression are not clearly understood. In vitro studies are necessary, yet have been hampered due to the limitations accompanied with the use of ovarian cancer cell lines and the heterogeneity of the ovarian cancer cell population derived from ascites fluids. In this study we present a simple, rapid and reproducible method for the isolation and characterization of ovarian cancer cells from solid tumor tissue and show that enzymatic digestion for 30 minutes with dispase II results in the most effective recovery of viable epithelial ovarian cancer (EOC) cells. The resulting cancer (EOC) cell preparations demonstrate a significant yield, high levels of viability and are fibroblast-free. They grow for up to six passages and retain the capacity of forming spheroids-like structures in agarose. In addition, they can be genetically manipulated and used for drug screening, thus rendering them highly suitable for downstream applications. Notably, isolation of ovarian cancer cells from solid specimens using this method has the advantage of allowing for isolation of cancer cells from early stages of ovarian cancer as well as obtaining cells from defined either primary and/or metastatic ovarian cancer sites. Thus, these cells are highly suitable for investigations aimed at understanding ovarian cancer.  相似文献   

20.

Background

The microenvironment plays a major role in the onset and progression of metastasis. Epithelial ovarian cancer (EOC) tends to metastasize to the peritoneal cavity where interactions within the microenvironment might lead to chemoresistance. Mesothelial cells are important actors of the peritoneal homeostasis; we determined their role in the acquisition of chemoresistance of ovarian tumours.

Methodology/Principal Findings

We isolated an original type of stromal cells, referred to as “Hospicells” from ascitis of patients with ovarian carcinosis using limiting dilution. We studied their ability to confer chemoresistance through heterocellular interactions. These stromal cells displayed a new phenotype with positive immunostaining for CD9, CD10, CD29, CD146, CD166 and Multi drug resistance protein. They preferentially interacted with epithelial ovarian cancer cells. This interaction induced chemoresistance to platin and taxans with the implication of multi-drug resistance proteins. This contact enabled EOC cells to capture patches of the Hospicells membrane through oncologic trogocytosis, therefore acquiring their functional P-gp proteins and thus developing chemoresistance. Presence of Hospicells on ovarian cancer tissue micro-array from patients with neo-adjuvant chemotherapy was also significantly associated to chemoresistance.

Conclusions/Significance

This is the first report of trogocytosis occurring between a cancer cell and an original type of stromal cell. This interaction induced autonomous acquisition of chemoresistance. The presence of stromal cells within patient''s tumour might be predictive of chemoresistance. The specific interaction between cancer cells and stromal cells might be targeted during chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号