首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Previous studies carried out in our laboratory have shown that myofibers formed by fusion of muscle satellite cells from donors with spinal muscular atrophy (SMA) type I or II undergo a characteristic degeneration 1.5-3 weeks after innervation with rat embryonic spinal cord explants. The only cells responsible for degeneration of innervated cocultures are SMA muscle satellite cells. In order to study the kinetics of nerve and muscle cell degeneration in nerve-muscle cocultures implicating SMA muscle cells, we attempted to simplify the nervous component of the coculture and identify the nerve cell types necessary for a successful innervation. We demonstrate here that motoneurons alone were unable to innervate myotubes. However, when three cell types (motoneurons, sensory neurons, and Schwann cells) were added onto a reconstituted muscular component consisting of cloned muscle satellite cells and cloned muscular fibroblasts, myotubes contracted, indicating that functional neuromuscular junctions were formed. We concluded that the three cell types were required for a successful innervation. Moreover, we studied the effects of culture medium conditioned by different combinations of nerve cells on innervation; we observed that physical contacts among sensory neurons, motoneurons, and myotubes are required for a successful innervation; in contrast Schwann cells can be replaced by a Schwann-cell-conditioned medium, indicating that these cells produce a putative soluble "innervation-promoting factor." Obviously such a reconstituted system does not reflect the in vivo situation but it allows the formation of functional motor synapses and could therefore allow us to elucidate neuromuscular disease pathogenesis, especially that of spinal muscular atrophy.  相似文献   

2.
The aim of this study was to elucidate the mechanisms responsible for the effects of innervation on the maturation of excitation-contraction coupling apparatus in human skeletal muscle. For this purpose, we compared the establishment of the excitation-contraction coupling mechanism in myotubes differentiated in four different experimental paradigms: 1) aneurally cultured, 2) cocultured with fetal rat spinal cord explants, 3) aneurally cultured in medium conditioned by cocultures, and 4) aneurally cultured in medium supplemented with purified recombinant chick neural agrin. Ca(2+) imaging indicated that coculturing human muscle cells with rat spinal cord explants increased the fraction of cells showing a functional excitation-contraction coupling mechanism. The effect of spinal cord explants was mimicked by treatment with medium conditioned by cocultures or by addition of 1 nM of recombinant neural agrin to the medium. The treatment with neural agrin increased the number of human muscle cells in which functional ryanodine receptors (RyRs) and dihydropyridine-sensitive L-type Ca(2+) channels were detectable. Our data are consistent with the hypothesis that agrin, released from neurons, controls the maturation of the excitation-contraction coupling mechanism and that this effect is due to modulation of both RyRs and L-type Ca(2+) channels. Thus, a novel role for neural agrin in skeletal muscle maturation is proposed.  相似文献   

3.
Summary Functional neuromuscular junctions formin vitro between spatially separated explants of fetal mammalian spinal cord and fetal skeletal muscle, even across species lines (rat and mouse). Differentiation and innervation occur when the muscle explant is oriented toward the ventral edge of the spinal cord cross-section, in the path of ventral-root nerve fibers. Arrival of these neurites enhances muscle development. This trophic influence is particularly apparent when cortisone is included in the nutrient fluid. Cross-striations begin to form toward the end of the first week of coupling, and acetylcholinesterase-positive loci appear by three weeks. In cultures maintained for 5–11 weeks, the more differentiated motor endplate structures show characteristic subneural infoldings, increased soleplate sarcoplasm, and terminal Schwann cells. Myelinated ventral-root fibers can be seen to bridge the gap between the cord and muscle explants, and to arborize and terminate on muscle fibers. Selective stimulation of ventral cord or ventral root can evoke widespread synchronized contractions of large numbers of fibers in the muscle expiant, demonstrating abundant formation of functional neuromuscular junctions between the coupled tissues.This study was supported by grants NS-06735, NS-06545 and NS-08770 from the National Institute of Neurological Diseases and Stroke, and the Nancy Louise Tryner Memorial Grant (No. 433) from the National Multiple Sclerosis Society.Kennedy Scholar at the Rose F. Kennedy Center for Research in Mental Retardation and Human Development (Albert Einstein College of Medicine).  相似文献   

4.
(1) Cultures of differentiated muscle cells have been grown from diseased human, mouse and chick skeletal muscle, and from cardiac muscle of the myopathic hamster. (2) Methods of culture established for normal embryonic and adult skeletal muscle cells have proved suitable for cultures of diseased muscle cells. (3) Myoblasts obtained from dy2J mouse muscle crushed in vivo before explanting fuse in culture and form morphologically normal myotubes. Studies of the effects of innervation by dy2J spinal cord neurones on the differentiation of normal, dy2J and dy myotubes have been inconclusive but it is probable that innervation does not play a part in the pathogenesis of this disorder. (4) Myoblasts prepared by trypsinization of embryonic dy muscle behave normally in culture and fuse to form myotubes that appear normal. It is not clear if myoblasts that migrate from explants of adult muscle in vitro fuse. Aggregates of non-fusing cells have been described, but under other culture conditions normal and abnormal forms of myotube have been observed. dy muscle fibres fail to regenerate even when cultured with normal spinal cord explants and dy nerves are without effect on regenerating normal muscle fibres. These tissue-culture studies suggest that the dy mouse mutation is a myopathic disorder. (5) Embryonic mdg myoblasts have a normal cell cycle in vitro and fuse to form well-differentiated myotubes with cross-striations. mdg myotubes have normal electro-physiological properties but do not contract spontaneously or on depolarization. The defect in the muscle of the mdg mutant appears to be a failure of excitation-contraction coupling. (6) Cells migrate earlier from explants of adult dystrophic chick muscle than from normal muscle but dystrophic chick myotubes appear morphologically normal. Myotubes prepared from embryonic dystrophic chick muscle become vacuolated and degenerate, changes that can be prevented by anti-proteases such as antipain. Lactic dehydrogenase isozyme subunit M4 is absent from dystrophic muscle in vivo but reappears in cultured myotubes. Dystrophic myotubes innervated in culture by either normal or dystrophic neurones exhibit bi-directional lcoupling and multiple innervation. These results suggest that there are changes in dystrophic myotubes and that chick muscular dystrophy is a myopathy. (7) Cardiac muscle cells from the cardiomyopathic hamster synthesize less actin and myosin than normal cells, and Z lines in dystrophic cells are irregularly arranged. The beat frequency of myopathic cardiac cells is lower than that of normal cells and declines more rapidly. Tissue-culture studies have not been made of hamster skeletal muscle. (8) Human dystrophic myotubes do not show degenerative changes in culture and have normal histochemical reactions. RNA synthesis appears normal in dystrophic myotubes but there may be changes in adenyl-cyclase activity and protein synthesis in dystrophic cells. Morphological and biochemical changes have been found in muscle cells cultured from a case of acid-maltase deficiency but phosphorylase activity re-appeared in myotubes cultured from biopsies of phosphorylase-deficient muscle. Innervation by normal mouse nerves does not induce degenerative changes in dystrophic myotubes. (9) Studies on the origins of myoblasts in explants of muscle fibres in culture suggest that in these conditions myoblasts are derived only from satellite cells and that this process may be the same in normal and diseased muscle.  相似文献   

5.
Specific interactions occur between nerve fibers from cultured sympathetic ganglia of guinea pigs and rats and single muscle cells from vas deferens and heart. The associations are long-lasting and resemble the pattern of autonomic neuromuscular relations in situ. In contrast, any associations formed between sympathetic nerve fibers and fibroblasts appear to be temporary. The results are discussed in relation to the normal innervation of smooth muscle and the reinnervation of explants.  相似文献   

6.
Electrophysiologic analyses have been carried out on in vitro-coupled explants of fetal rodent spinal cord and adult skeletal muscle of human as well as rodent origin. The studies demonstrate that characteristic neuromuscular transmission can develop and be maintained in these unusual tissue combinations during long-term culture. After coupling periods of 2–7 weeks in vitro, selective stimulation of spinal cord evokes widespread coordinated contractions in the muscle tissue. Simultaneous microelectrode recordings of cord and muscle responses to local cord, or ventral root, stimuli show that muscle action potentials (and contractions) generally occur with latencies of several msec after onset of cord discharges. Similar temporal relations are often seen during spontaneous rhythmic discharges of the coupled cord and muscle tissues. Long series of repetitive discharges, at 2–5 sec intervals, may occur synchronously between these cord and muscle explants, in response to single cord (or dorsal-root ganglion) stimuli, and they may also appear spontaneously. d-Tubocurarine (1–10 μg/ml) selectively and reversibly blocks neuromuscular transmission in these cultures. Eserine accelerates recovery of normal function. Spontaneous repetitive fibrillations of many of the cultured muscle fibers are observed sporadically, and these contractions often continue unabated after block of neuromusclar transmission by d-tubocurarine. Many of the fibers which show asynchronous fibrillations are probably not innervated (as in denervated muscle in situ). In some cases, however, extracellular as well as intracellular recordings indicate that similar fibrillations may also occur in fibers which are clearly innervated. Repetitive cord and muscle discharges are greatly augmented after introduction of strychnine. Complex rhythmic oscillatory (ca. 10/sec) afterdischarges generated in strychninized cord explants lead to similarly patterned muscle discharges (and contractions), which may also occur, at, times, in normal medium.  相似文献   

7.
The nuclei of cultured noninnervated muscle cells are heterogeneous with respect to production of mRNA for the nicotinic acetylcholine receptor (AChR). Some nuclei actively express AChR mRNA while others have a low level of activity or are inactive. To determine if innervation, or a factor released by neurons, influences nuclear expression of AChR mRNA, we examined mRNA at a single cell level via in situ hybridization and autoradiography with an alpha-subunit AChR genomic probe. Four days after plating, we co-cultured chicken primary muscle cells with spinal cord explants, ciliary neurons, or dorsal root ganglia (DRG) cells. In situ hybridization of the spinal-cord and muscle-cell co-cultures with the AChR alpha-subunit probe revealed a high density of silver grains on muscle cells, which were within two explant diameters of the spinal cord explant, and a graded decrease in silver grain density as the distance from the explant increased, as well as the appearance of a strikingly nonhomogenous distribution of active and inactive muscle cell nuclei. When ciliary neurons were uniformly distributed over the muscle cells, a high level of AChR mRNA was induced, but no gradients appeared. Neither an increased mRNA level nor a gradient was observed when DRG cells were co-cultured with muscle cells. When ciliary neurons are cultured within Costar permeable inserts, which prevent any contact between the neurons and the underlying muscle cells, AChR messenger RNA is still induced, showing that diffusible factors are responsible. Our results indicate that molecules released by cholinergic neurons regulate the expression of AChR mRNA in the myotubes and raise the possibility that AChR expression depends on both neuronal signals and on intracellular information from the muscle cell.  相似文献   

8.
Isozymes of creatine kinase and glycogen phosphorylase are excellent markers of skeletal muscle maturation. In adult innervated muscle only the muscle-gene-specific isozymes are present, whereas aneurally cultured human muscle has predominantly the fetal pattern of isozymes. We have studied the isozyme pattern of human muscle cultured in monolayer and innervated by rat embryo spinal cord explants for 20-42 d. In this culture system, large groups of innervated muscle fibers close to the ventral part of the spinal cord explant continuously contracted. The contractions were reversibly blocked by 1 mM d-tubocurarine. In those innervated fibers, the total activity and the muscle-gene-specific isozymes of both enzymes increased significantly. The amount of muscle-gene-specific isozymes directly correlated with the duration of innervation. Control noninnervated muscle fibers from the same dishes as the innervated fibers remained biochemically immature. This study demonstrated that de novo innervation of human muscle cultured in monolayer exerts a time-related maturational influence that is not mediated by a diffusable neural factor.  相似文献   

9.
Summary Previously, we have engineered three-dimensional (3-D) skeletal muscle constructs that generate force and display a myosin heavy-chain (MHC) composition of fetal muscle. The purpose of this study was to evaluate the functional characteristics of 3-D skeletal muscle constructs cocultured with fetal nerve explants. We hypothesized that coculture of muscle constructs with neural cells would produce constructs with increased force and adult MHC isoforms. Following introduction of embryonic spinal cord explants to a layer of confluent muscle cells, the neural tissue integrated with the cultured muscle cells to form 3-D muscle constructs with extensions. Immunohistochemical labeling indicated that the extensions were neural tissue and that the junctions between the nerve extensions and the muscle constructs contained clusters of acetylcholine receptors. Compared to muscles cultured without nerve explants, constructs formed from nerve-muscle coculture showed spontaneous contractions with an increase in frequency and force. Upon field stimulation, both twitch (2-fold) and tetanus (1.7-fold) were greater in the nerve-muscle coculture system. Contractions could be elicited by electrically stimulating the neural extensions, although smaller forces are produced than with field stimulation. Severing the extension eliminated the response to electrical stimulation, excluding field stimulation, as a contributing factor. Nervemuscle constructs showed a tendency to have higher contents of adult and lower contents of fetal MHC isoforms, but the differences were not significant. In conclusion, we have successfully engineered a 3-D nerve-muscle construct that displays functional neuromuscular junctions and can be electrically stimulated to contract via the neural extensions projecting from the construct.  相似文献   

10.
Acetylcholine receptors in the muscle cell membrane accumulate at the nerve contact area in Xenopus cell cultures. The correlation between spontaneous synaptic potential properties and extent of acetylcholine receptor accumulation was studied. Small and infrequent miniature endplate potentials were measured before acetylcholine receptor accumulation which was observed with fluorescence microscopy using tetramethylrhodamine-conjugated α-bungarotoxin. As acetylcholine receptors accumulate at the nerve contact area, these synaptic potentials become larger and their frequency increases dramatically. In nerve-contacted muscle cells where spontaneous synaptic activity could not be detected, extensive acetylcholine receptor accumulation was not found at sites of nerve contact. Furthermore, muscle cells which exhibited extensive acetylcholine receptor accumulation along the nerve always produced miniature endplate potentials. Thus acetylcholine receptor accumulation and the presence of miniature endplate potentials were strongly correlated. Noncholinergic neurons from dorsal root ganglia did not form functional synaptic contacts with muscle cells nor acetylcholine receptor accumulation along the path of contact. Furthermore, explants from tadpole spinal cord formed functional synaptic contacts with muscle cells but rarely caused AChR localization. These data are discussed in terms of developmental processes during neuromuscular junction formation.  相似文献   

11.
Pieces of thoracic body wall, including intercostal muscles, ribs, and the spinal cord were explanted from 15 to 18-day embryonic rats and maintained in organ culture for up to 6 days. During the time in culture muscle fibers continued to increase in size, and nerve sprouts extended along the center of the muscle. When muscle-spinal cord explants were cultured at 15 days gestation, the number of synaptic inputs per fiber increased with time in culture. Subsequently synapse elimination began with a time course similar to that recorded in vivo. In 15-day explants acetylcholine receptors were uniformly distributed along the fibers and focal cholinesterase (ChE) was not detected. The cholinergic receptors started to cluster at the midregion of the fibers after 1 day explantation, and ChE was detected in the fibers after 2 days in culture. The central receptor clusters were associated with ChE and their formation was dependent on the presence of nerve terminals. We conclude that neuromuscular contacts develop in organ culture with a pattern and time course similar to that of synapes developing in utero.  相似文献   

12.
The sensory organs of the chicken inner ear are innervated by the peripheral processes of statoacoustic ganglion (SAG) neurons. Sensory organ innervation depends on a combination of axon guidance cues1 and survival factors2 located along the trajectory of growing axons and/or within their sensory organ targets. For example, functional interference with a classic axon guidance signaling pathway, semaphorin-neuropilin, generated misrouting of otic axons3. Also, several growth factors expressed in the sensory targets of the inner ear, including Neurotrophin-3 (NT-3) and Brain Derived Neurotrophic Factor (BDNF), have been manipulated in transgenic animals, again leading to misrouting of SAG axons4. These same molecules promote both survival and neurite outgrowth of chick SAG neurons in vitro5,6.Here, we describe and demonstrate the in vitro method we are currently using to test the responsiveness of chick SAG neurites to soluble proteins, including known morphogens such as the Wnts, as well as growth factors that are important for promoting SAG neurite outgrowth and neuron survival. Using this model system, we hope to draw conclusions about the effects that secreted ligands can exert on SAG neuron survival and neurite outgrowth. SAG explants are dissected on embryonic day 4 (E4) and cultured in three-dimensional collagen gels under serum-free conditions for 24 hours. First, neurite responsiveness is tested by culturing explants with protein-supplemented medium. Then, to ask whether point sources of secreted ligands can have directional effects on neurite outgrowth, explants are co-cultured with protein-coated beads and assayed for the ability of the bead to locally promote or inhibit outgrowth. We also include a demonstration of the dissection (modified protocol7) and culture of E6 spinal cord explants. We routinely use spinal cord explants to confirm bioactivity of the proteins and protein-soaked beads, and to verify species cross-reactivity with chick tissue, under the same culture conditions as SAG explants. These in vitro assays are convenient for quickly screening for molecules that exert trophic (survival) or tropic (directional) effects on SAG neurons, especially before performing studies in vivo. Moreover, this method permits the testing of individual molecules under serum-free conditions, with high neuron survival8.  相似文献   

13.
Neuromuscular junctions were formedin vitro between rat spinal cord explants and myotubes. At various intervals after the spinal cord explants were added to the myotube culture (7 hr to 15 days of coculture), the presence of functional neuromuscular junctions was determined by recording miniature endplate potentials (mepps) from the myotubes contacted by a few neurites. Electron microscopical studies were conducted on identified myotubes in which mepps were recorded. Mepps were already found as early as 7 hr after coculture. The fine structure of these newly formed neuromuscular junctions was simple. No synaptic specializations were observed except the presence of a small number of synaptic vesicles in the nerve. The neuromuscular junctions differentiated during the coculture period. Synaptic vesicles formed a cluster at the prejunctional membrane with a localized density in the middle. Basal lamina started to form in 4-day-old cocultures and became continuous in cocultures of 10 days or longer. Clear postjunctional foldings were observed in 15-day-old cocultures. Higher mepp frequencies were correlated with more advanced ultrastructure.  相似文献   

14.
Trypsin-dissociated myoblasts from leg muscle of 12-day chick embryos have been cultured in monolayers. After four days the muscle cultures have been confronted with fragments of the spinal cord of six-day chick embryos. Electrophysiological and morphological analysis demonstrate that characteristic neuromuscular transmission can develop in these cultures. Electrical stimulation of the cord fragment evokes contractions of innervated muscle fibers, from which end plate potentials and miniature end plate potentials with average frequency around one per second or more can be recorded. D-tubocurarine (1 μg/ml) suppresses reversibly these synaptic potentials. Non-innervated muscle fibers are sensitive to acetylcholine over all their surface, while innervated muscle fibers are sensitive at the regions where structures suggestive of motor end plate (“bulb-type”) are found. We can conclude that neuromuscular connections developed in vitro in our experiments are functional in respect of transmission of impulses but also in respect of neurotrophic influences for restriction of chemosensitivity.  相似文献   

15.
Strips of denervated adult mouse diaphragm muscle maintained in organ culture were reinnervated by nerve processes growing out from explants of embryonic mouse spinal cord. In vivo, following denervation, the action potential loses its sensitivity to tetrodotoxin; this sensitivity is regained upon reinnervation. Similarly, action potentials in cultured muscle fibres were insensitive to tetrodotoxin, and sensitivity was restored in muscle fibres that became reinnervated in vitro. Tetrodotoxin sensitivity was also restored in cultured muscle fibres reinnervated in the continuous presence of d-tubocurarine, but it was not induced by 4 days of direct electrical stimulation of noninnervated muscles. We conclude that developing nerve terminals can exert a trophic action on adult muscle fibres that is independent of electrical activity in the muscle.  相似文献   

16.
This protocol specifically focuses on tools for assessing phrenic motor neuron (PhMN) innervation of the diaphragm at both the electrophysiological and morphological levels. Compound muscle action potential (CMAP) recording following phrenic nerve stimulation can be used to quantitatively assess functional diaphragm innervation by PhMNs of the cervical spinal cord in vivo in anesthetized rats and mice. Because CMAPs represent simultaneous recording of all myofibers of the whole hemi-diaphragm, it is useful to also examine the phenotypes of individual motor axons and myofibers at the diaphragm NMJ in order to track disease- and therapy-relevant morphological changes such as partial and complete denervation, regenerative sprouting and reinnervation. This can be accomplished via whole-mount immunohistochemistry (IHC) of the diaphragm, followed by detailed morphological assessment of individual NMJs throughout the muscle. Combining CMAPs and NMJ analysis provides a powerful approach for quantitatively studying diaphragmatic innervation in rodent models of CNS and PNS disease.  相似文献   

17.
Adult rat muscle fibres were dissociated by using collagenase and maintained in culture. One to nine days later, neurons obtained from stages 22-30 Xenopus laevis embryos, or neonatal spinal cord, or pheochromocytoma (PC12) cells treated with nerve growth factor were added. Subsequently, the co-cultures were maintained for up to eight days. Functional synapses were formed with variable efficiency: 12% in rat-Xenopus nerve-muscle co-cultures, 23% in rat-rat and 33% in PC12 co-cultures. Miniature endplate potentials (MEPPs) and currents (MEPCs) were recorded, at frequencies ranging from 0.01 to 0.9 Hz. Their mean amplitude was smaller than in normal mammalian muscles. The rise time and time-constant of decay of MEPCs was about seven to ten times longer than that found in the original muscle, resembling immature synapses. (+)-Tubocurarine abolished the MEPPs in the rat-PC12 neuromuscular junctions. It is concluded that dissociated adult rat muscle fibres retain their ability of being reinnervated, and can form functional synapses with foreign neurons and transformed chromaffin cells.  相似文献   

18.
Spinal muscular atrophy is an inherited motor neuron disease that results from a deficiency of the survival of motor neuron (SMN) protein. SMN is ubiquitinated and degraded through the ubiquitin proteasome system (UPS). We have previously shown that proteasome inhibition increases SMN protein levels, improves motor function, and reduces spinal cord, muscle, and neuromuscular junction pathology of spinal muscular atrophy (SMA) mice. Specific targets in the UPS may be more efficacious and less toxic. In this study, we show that the E3 ubiquitin ligase, mind bomb 1 (Mib1), interacts with and ubiquitinates SMN and facilitates its degradation. Knocking down Mib1 levels increases SMN protein levels in cultured cells. Also, knocking down the Mib1 orthologue improves neuromuscular function in Caenorhabditis elegans deficient in SMN. These findings demonstrate that Mib1 ubiquitinates and catalyzes the degradation of SMN, and thus represents a novel therapeutic target for SMA.  相似文献   

19.
Analysis of neuromuscular junction morphology can give important insight into the physiological status of a given motor neuron. Analysis of thin flat muscles can offer significant advantage over traditionally used thicker muscles, such as those from the hind limb (e.g. gastrocnemius). Thin muscles allow for comprehensive overview of the entire innervation pattern for a given muscle, which in turn permits identification of selectively vulnerable pools of motor neurons. These muscles also allow analysis of parameters such as motor unit size, axonal branching, and terminal/nodal sprouting. A common obstacle in using such muscles is gaining the technical expertise to dissect them. In this video, we detail the protocol for dissecting the transversus abdominis (TVA) muscle from young mice and performing immunofluorescence to visualize axons and neuromuscular junctions (NMJs). We demonstrate that this technique gives a complete overview of the innervation pattern of the TVA muscle and can be used to investigate NMJ pathology in a mouse model of the childhood motor neuron disease, spinal muscular atrophy.  相似文献   

20.
Adult rat and human spinal cord neural stem/progenitor cells (NSPCs) cultured in growth factor-enriched medium allows for the proliferation of multipotent, self-renewing, and expandable neural stem cells. In serum conditions, these multipotent NSPCs will differentiate, generating neurons, astrocytes, and oligodendrocytes. The harvested tissue is enzymatically dissociated in a papain-EDTA solution and then mechanically dissociated and separated through a discontinuous density gradient to yield a single cell suspension which is plated in neurobasal medium supplemented with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and heparin. Adult rat spinal cord NSPCs are cultured as free-floating neurospheres and adult human spinal cord NSPCs are grown as adherent cultures. Under these conditions, adult spinal cord NSPCs proliferate, express markers of precursor cells, and can be continuously expanded upon passage. These cells can be studied in vitro in response to various stimuli, and exogenous factors may be used to promote lineage restriction to examine neural stem cell differentiation. Multipotent NSPCs or their progeny can also be transplanted into various animal models to assess regenerative repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号