首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yersinia pestis 201 contains 4 plasmids pPCP1, pMT1, pCD1 and pCRY, but little is known about the effects of these plasmids on the dissemination of Y. pestis. We developed a plasmid-based luxCDABE bioreporter in Y. pestis 201, Y. pestis 201-pCD1+, Y. pestis 201-pMT1+, Y. pestis 201-pPCP1+, Y. pestis 201-pCRY+, Y. pestis 201-p and Yersinia pseudotuberculosis Pa36060 strains, and investigated their dissemination by bioluminescence imaging during primary septicemic plague in a mouse model. These strains mainly colonized the livers and spleens shortly after intravenous inoculation. Y. pestis 201-pMT1+ appeared to have a stronger ability to survive in the livers, spleens and blood, and to be more virulent than other plasmid-deficient strains. Y. pestis 201-pPCP1+ appeared to have a stronger ability to colonize lungs than other plasmid-deficient strains. Pa36060 has the strongest ability to colonize intestines and lungs. Y. pestis 201 has the strongest ability to survive in blood, and the strongest virulence. These results indicated that the plasmid pMT1 was an important determinant in the colonization of livers, spleens and blood, whereas the plasmid pPCP1 appeared to correlate with the colonization in lungs. The resistance to killing in mouse blood seemed to be the critical factor causing animal death.  相似文献   

2.

Background

The bacterial luciferase (lux) gene cassette consists of five genes (luxCDABE) whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo.

Methodology/Principal Findings

Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH2) was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp) from Vibrio harveyi. FMNH2 supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background.

Conclusions/Significance

The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies.  相似文献   

3.
Yersinia pestis has evolved from Yersinia pseudotuberculosis serotype O:1b. A typical Y. pestis contains three plasmids: pCD1, pMT1 and pPCP1. However, some isolates only harbor pCD1 (pCD1+-mutant). Y. pestis and Y. pseudotuberculosis share a common plasmid (pCD1 or pYV), but little is known about whether Y. pseudotuberculosis exhibited plague-inducing potential before it was evolved into Y. pestis. Here, the luxCDABE::Tn5::kan was integrated into the chromosome of the pCD1+-mutant, Y. pseudotuberculosis or Escherichia coli K12 to construct stable bioluminescent strains for investigation of their dissemination in mice by bioluminescence imaging technology. After subcutaneous infection, the pCD1+-mutant entered the lymph nodes, followed by the liver and spleen, and, subsequently, the lungs, causing pathological changes in these organs. Y. pseudotuberculosis entered the lymph nodes, but not the liver, spleen and lungs. It also resided in the lymph nodes for several days, but did not cause lymphadenitis or pathological lesions. By contrast, E. coli K12-lux was not isolatable from mouse lymph nodes, liver, spleen and lungs. These results indicate that the pCD1+-mutant can cause typical bubonic and pneumonic plague-like diseases, and Y. pestis has inherited lymphoid tissue tropism from its ancestor rather than acquiring these properties independently.  相似文献   

4.
Septic pneumonias resulting from bacterial infections of the lung are a leading cause of human death worldwide. Little is known about the capacity of CD8 T cell-mediated immunity to combat these infections and the types of effector functions that may be most effective. Pneumonic plague is an acutely lethal septic pneumonia caused by the Gram-negative bacterium Yersinia pestis. We recently identified a dominant and protective Y. pestis antigen, YopE69–77, recognized by CD8 T cells in C57BL/6 mice. Here, we use gene-deficient mice, Ab-mediated depletion, cell transfers, and bone marrow chimeric mice to investigate the effector functions of YopE69–77-specific CD8 T cells and their relative contributions during pulmonary Y. pestis infection. We demonstrate that YopE69–77-specific CD8 T cells exhibit perforin-dependent cytotoxicity in vivo; however, perforin is dispensable for YopE69–77-mediated protection. In contrast, YopE69–77-mediated protection is severely impaired when production of TNFα and IFNγ by CD8 T cells is simultaneously ablated. Interestingly, TNFα is absolutely required at the time of challenge infection and can be provided by either T cells or non-T cells, whereas IFNγ provided by T cells prior to challenge appears to facilitate the differentiation of optimally protective CD8 T cells. We conclude that cytokine production, not cytotoxicity, is essential for CD8 T cell-mediated control of pulmonary Y. pestis infection and we suggest that assays detecting Ag-specific TNFα production in addition to antibody titers may be useful correlates of vaccine efficacy against plague and other acutely lethal septic bacterial pneumonias.  相似文献   

5.
In this paper we evaluate the role of neutrophils in pneumonic plague. Splenic neutrophils from naïve BALB/c mice were found to reduce numbers of culturable Yersinia pestis strain GB in suspension. A murine, BALB/c, intranasal model of pneumonic plague was used in conjunction with in vivo neutrophil ablation, using the GR-1 antibody. This treatment reduced neutrophil numbers without affecting other leukocyte numbers. Neutrophil ablated mice exhibited increased bacterial colonisation of the lung 24 h post infection. Furthermore, exposure of Y. pestis to human neutrophils resulted in a 5-fold reduction in the number of viable bacterial cells, whereas, PBMCs had no effect.  相似文献   

6.
The molecular machinery that regulates the entry and survival of Yersinia pestis in host macrophages is poorly understood. Here, we report the development of automated high-content imaging assays to quantitate the internalization of virulent Y. pestis CO92 by macrophages and the subsequent activation of host NF-κB. Implementation of these assays in a focused chemical screen identified kinase inhibitors that inhibited both of these processes. Rac-2-ethoxy-3 octadecanamido-1-propylphosphocholine (a protein Kinase C inhibitor), wortmannin (a PI3K inhibitor), and parthenolide (an IκB kinase inhibitor), inhibited pathogen-induced NF-κB activation and reduced bacterial entry and survival within macrophages. Parthenolide inhibited NF-κB activation in response to stimulation with Pam3CSK4 (a TLR2 agonist), E. coli LPS (a TLR4 agonist) or Y. pestis infection, while the PI3K and PKC inhibitors were selective only for Y. pestis infection. Together, our results suggest that phagocytosis is the major stimulus for NF-κB activation in response to Y. pestis infection, and that Y. pestis entry into macrophages may involve the participation of protein kinases such as PI3K and PKC. More importantly, the automated image-based screening platform described here can be applied to the study of other bacteria in general and, in combination with chemical genetic screening, can be used to identify host cell functions facilitating the identification of novel antibacterial therapeutics.  相似文献   

7.

Background

Rhombomys opimus (great gerbil) is a reservoir of Yersinia pestis in the natural plague foci of Central Asia. Great gerbils are highly resistant to Y. pestis infection. The coevolution of great gerbils and Y. pestis is believed to play an important role in the plague epidemics in Central Asia plague foci. However, the dynamics of Y. pestis infection and the corresponding antibody response in great gerbils have not been evaluated. In this report, animal experiments were employed to investigate the bacterial load in both the liver and spleen of infected great gerbils. The dynamics of the antibody response to the F1 capsule antigen of Y. pestis was also determined.

Methodology

Captured great gerbils that tested negative for both anti-F1 antibodies and bacterial isolation were infected subcutaneously with different doses (105 to 1011 CFU) of a Y. pestis strain isolated from a live great gerbil during routine plague surveillance in the Junggar Basin, Xinjiang, China. The clinical manifestations, changes in body weight, anal temperature, and gross anatomy of the infected animals were observed. The blood cell count, bacterial load, and anti-F1 antibody titers were determined at different time points after infection using a blood analyzer, plate counts, and an indirect hemagglutination assay, respectively.

Conclusions/Significance

The dynamics of bacterial load and the anti-F1 antibody concentration in great gerbils are highly variable among individuals. The Y. pestis infection in great gerbils could persist as long as 15 days. They act as an appropriate reservoir for plague in the Junggar Basin, which is part of the natural plague foci in Central Asia. The dynamics of the Y. pestis susceptibility of great gerbil will improve the understanding of its variable resistance, which would facilitate the development of more effective countermeasures for controlling plague epidemics in this focus.  相似文献   

8.
The use of bioluminescence as a sensitive marker for detection of Pseudomonas spp. in the rhizosphere was investigated. Continuous expression of the luxCDABE genes, required for bioluminescence, was not detectable in the rhizosphere. However, when either a naphthalene-inducible luxCDABE construct or a constitutive luxAB construct (coding only for the luciferase) was introduced into the Pseudomonas cells, light emission could be initiated just prior to measurement by the addition of naphthalene or the substrate for luciferase, n-decyl aldehyde, respectively. These Pseudomonas cells could successfully be detected in the rhizosphere by using autophotography or optical fiber light measurement techniques. Detection required the presence of 103 to 104 CFU/cm of root, showing that the bioluminescence technique is at least 1,000-fold more sensitive than β-galactosidase-based systems.  相似文献   

9.
Autotransporters, the largest family of secreted proteins in Gram‐negative bacteria, perform a variety of functions, including adherence, cytotoxicity and immune evasion. In Yersinia pestis the autotransporter YapE has adhesive properties and contributes to disease in the mouse model of bubonic plague. Here, we demonstrate that omptin cleavage of Y. pestis YapE is required to mediate bacterial aggregation and adherence to eukaryotic cells. We demonstrate that omptin cleavage is specific for the Y. pestis and Y. pseudotuberculosis YapE orthologues but is not conserved in the Yersinia enterocolitica protein. We also show that cleavage of YapE occurs in Y. pestis but not in the enteric Yersinia species, and requires the omptin Pla (plasminogen activator protease), which is encoded on the Y. pestis‐specific plasmid pPCP1. Together, these data show that post‐translation modification of YapE appears to be specific to Y. pestis, was acquired along with the acquisition of pPCP1 during the divergence of Y. pestis from Y. pseudotuberculosis, and are the first evidence of a novel mechanism to regulate bacterial adherence.  相似文献   

10.
An important virulence strategy evolved by bacterial pathogens to overcome host defenses is the modulation of host cell death. Previous observations have indicated that Yersinia pestis, the causative agent of plague disease, exhibits restricted capacity to induce cell death in macrophages due to ineffective translocation of the type III secretion effector YopJ, as opposed to the readily translocated YopP, the YopJ homologue of the enteropathogen Yersinia enterocolitica O∶8. This led us to suggest that reduced cytotoxic potency may allow pathogen propagation within a shielded niche, leading to increased virulence. To test the relationship between cytotoxic potential and virulence, we replaced Y. pestis YopJ with YopP. The YopP-expressing Y. pestis strain exhibited high cytotoxic activity against macrophages in vitro. Following subcutaneous infection, this strain had reduced ability to colonize internal organs, was unable to induce septicemia and exhibited at least a 107-fold reduction in virulence. Yet, upon intravenous or intranasal infection, it was still as virulent as the wild-type strain. The subcutaneous administration of the cytotoxic Y. pestis strain appears to activate a rapid and potent systemic, CTL-independent, immunoprotective response, allowing the organism to overcome simultaneous coinfection with 10,000 LD50 of virulent Y. pestis. Moreover, three days after subcutaneous administration of this strain, animals were also protected against septicemic or primary pneumonic plague. Our findings indicate that an inverse relationship exists between the cytotoxic potential of Y. pestis and its virulence following subcutaneous infection. This appears to be associated with the ability of the engineered cytotoxic Y. pestis strain to induce very rapid, effective and long-lasting protection against bubonic and pneumonic plague. These observations have novel implications for the development of vaccines/therapies against Y. pestis and shed new light on the virulence strategies of Y. pestis in nature.  相似文献   

11.
A dual promoter probe system based on a tandem bi-cistronic GFP-luxCDABE reporter cassette is described and implemented. This system is assembled in two synthetic, modular, broad-host range plasmids based on pBBR1 and RK2 origins of replication, allowing its utilization in an extensive number of gram-negative bacteria. We analyze the performance of this dual cassette in two hosts, Escherichia coli and Pseudomonas putida, by examining the induction properties of the lacIq-Ptrc expression system in the first host and the Pb promoter of the benzoate degradation pathway in the second host. By quantifying the bioluminescence signal produced through the expression of the lux genes, we explore the dynamic range of induction for the two systems (Ptrc-based and Pb-based) in response to the two inducers. In addition, by quantifying the fluorescence signals produced by GFP expression, we were able to monitor the single-cell expression profile and to explore stochasticity of the same two promoters by flow cytometry. The results provided here demonstrate the power of the dual GFP-luxCDABE cassette as a new, single-step tool to assess promoter properties at both the population and single-cell levels in gram-negative bacteria.  相似文献   

12.
Existing media designed for selective isolation of clinically important members of the genus Yersinia were found to be unsatisfactory for the growth and isolation of Yersinia pestis. We report the development of a new selective agar medium (termed BIN) that supports the growth of Y. pestis. The development of the formulation of this medium was based on a fluorescence screening system designed for monitoring bacterial growth on semisolid media, using a green fluorescent protein-expressing strain. High-throughput combinatorial experiments can be conducted for the quantitative evaluation of the effect of different medium components on growth. Generation of fluorescence plots in this system, using microplates, allowed the quantitative evaluation of the growth rate of Y. pestis EV76 cultures in different agar compositions. The final BIN formulation is based on brain heart infusion agar, to which the selective agents irgasan, cholate salts, crystal violet, and nystatin were introduced. It was found that BIN agar is more efficient in supporting colony formation and recovery of Y. pestis than are the conventional semisolid media MacConkey agar and Yersinia-selective agar (cefsulodin-irgasan-novobiocin agar). The advantage of BIN over other media has been also demonstrated in recovering virulent Y. pestis from the mixed bacterial populations found in decaying carcasses of infected mice. The BIN medium is suggested as a selective medium for isolation and recovery of Y. pestis from various backgrounds.  相似文献   

13.
Several pathogenicity islands have recently been identified in different bacterial species, including a high-pathogenicity island (HPI) in Yersinia enterocolitica 1B. In Y. pestis, a 102-kb chromosomal fragment (pgm locus) that carries genes involved in iron acquisition and colony pigmentation can be deleted en bloc. In this study, characterization and mapping of the 102-kb region of Y. pestis 6/69 were performed to determine if this unstable region is a pathogenicity island. We found that the 102-kb region of Y. pestis is composed of two clearly distinct regions: an ≈35-kb iron acquisition segment, which is an HPI per se, linked to an ≈68-kb pigmentation segment. This linkage was preserved in all of the Y. pestis strains studied. However, several nonpigmented Y. pestis strains harboring an irp2 gene have been previously identified, suggesting that the pigmentation segment is independently mobile. Comparison of the physical map of the 102-kb region of these strains with that of strain 6/69 and complementation experiments were carried out to determine the genetic basis of this phenomenon. We demonstrate that several different mechanisms involving mutations and various-size deletions are responsible for the nonpigmented phenotype in the nine strains studied. However, no deletion corresponded exactly to the pigmentation segment. The 102-kb region of Y. pestis is an evolutionarily stable linkage of an HPI with a pigmentation segment in a region of the chromosome prone to rearrangement in vitro.  相似文献   

14.
We collected Oropsylla montana from rock squirrels, Spermophilus varigatus, and infected a subset of collected fleas with Yersinia pestis, the etiological agent of plague. We used bar-tagged DNA pyrosequencing to characterize bacterial communities of wild, uninfected controls and infected fleas. Bacterial communities within Y. pestis-infected fleas were substantially more similar to one another than communities within wild or control fleas, suggesting that infection alters the bacterial community in a directed manner such that specific bacterial lineages are severely reduced in abundance or entirely eliminated from the community. Laboratory conditions also significantly altered flea-associated bacterial communities relative to wild communities, but much less so than Y. pestis infection. The abundance of Firmicutes decreased considerably in infected fleas, and Bacteroidetes were almost completely eliminated from both the control and infected fleas. Bartonella and Wolbachia were unaffected or responded positively to Y. pestis infection.  相似文献   

15.
16.

Background

Optical imaging (OI) techniques such as bioluminescence and fluorescence imaging have been widely used to track diseases in a non-invasive manner within living subjects. These techniques generally require bioluminescent and fluorescent probes. Here we demonstrate the feasibility of using radioactive probes for in vivo molecular OI.

Methodology/Principal Findings

By taking the advantages of low energy window of light (1.2–3.1 eV, 400–1000 nm) resulting from radiation, radionuclides that emit charged particles such as β+ and β can be successfully imaged with an OI instrument. In vivo optical images can be obtained for several radioactive probes including 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), Na18F, Na131I, 90YCl3 and a 90Y labeled peptide that specifically target tumors.

Conclusions/Significance

These studies demonstrate generalizability of radioactive OI technique. It provides a new molecular imaging strategy and will likely have significant impact on both small animal and clinical imaging.  相似文献   

17.
Inhalation of Yersinia pestis causes primary pneumonic plague, a highly lethal syndrome with mortality rates approaching 100%. Pneumonic plague progression is biphasic, with an initial pre-inflammatory phase facilitating bacterial growth in the absence of host inflammation, followed by a pro-inflammatory phase marked by extensive neutrophil influx, an inflammatory cytokine storm, and severe tissue destruction. Using a FRET-based probe to quantitate injection of effector proteins by the Y. pestis type III secretion system, we show that these bacteria target alveolar macrophages early during infection of mice, followed by a switch in host cell preference to neutrophils. We also demonstrate that neutrophil influx is unable to limit bacterial growth in the lung and is ultimately responsible for the severe inflammation during the lethal pro-inflammatory phase.  相似文献   

18.
The virulence protein YopM of the plague bacterium Yersinia pestis has different dominant effects in liver and spleen. Previous studies focused on spleen, where YopM inhibits accumulation of inflammatory dendritic cells. In the present study we focused on liver, where PMN function may be directly undermined by YopM without changes in inflammatory cell numbers in the initial days of infection, and foci of inflammation are easily identified. Mice were infected with parent and ΔyopM-1 Y. pestis KIM5, and effects of YopM were assessed by immunohistochemistry and determinations of bacterial viable numbers in organs. The bacteria were found associated with myeloid cells in foci of inflammation and in liver sinusoids. A new in-vivo phenotype of YopM was revealed: death of inflammatory cells, evidenced by TUNEL staining beginning at d 1 of infection. Based on distributions of Ly6G+, F4/80+, and iNOS+ cells within foci, the cells that were killed could have included both PMNs and macrophages. By 2 d post-infection, YopM had no effect on distribution of these cells, but by 3 d cellular decomposition had outstripped acute inflammation in foci due to parent Y. pestis, while foci due to the ΔyopM-1 strain still contained many inflammatory cells. The destruction depended on the presence of both PMNs in the mice and YopM in the bacteria. In mice that lacked the apoptosis mediator caspase-3 the infection dynamics were novel: the parent Y. pestis was limited in growth comparably to the ΔyopM-1 strain in liver, and in spleen a partial growth limitation for parent Y. pestis was seen. This result identified caspase-3 as a co-factor or effector in YopM''s action and supports the hypothesis that in liver YopM''s main pathogenic effect is mediated by caspase-3 to cause apoptosis of PMNs.  相似文献   

19.

Background

Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics.

Methodology/Principal Findings

The objective of this work was to develop an alternative to conventional phage lysis tests – a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages ϕA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. ϕA1122-specific qPCR enabled the detection of an initial bacterial concentration of 103 CFU/ml (equivalent to as few as one Y. pestis cell per 1-µl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, ϕA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR.

Conclusions/Significance

Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.  相似文献   

20.
Plague, initiated by Yersinia pestis infection, is a rapidly progressing disease with a high mortality rate if not quickly treated. The existence of antibiotic-resistant Y. pestis strains emphasizes the need for the development of novel countermeasures against plague. We previously reported the generation of a recombinant Y. pestis strain (Kim53ΔJ+P) that over-expresses Y. enterocolitica YopP. When this strain was administered subcutaneously to mice, it elicited a fast and effective protective immune response in models of bubonic, pneumonic and septicemic plague. In the present study, we further characterized the immune response induced by the Kim53ΔJ+P recombinant strain. Using a panel of mouse strains defective in specific immune functions, we observed the induction of a prompt protective innate immune response that was interferon-γ dependent. Moreover, inoculation of mice with Y. pestis Kim53ΔJ+P elicited a rapid protective response against secondary infection by other bacterial pathogens, including the enteropathogen Y. enterocolitica and the respiratory pathogen Francisella tularensis. Thus, the development of new therapies to enhance the innate immune response may provide an initial critical delay in disease progression following the exposure to highly virulent bacterial pathogens, extending the time window for successful treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号